如圖,AB是半圓O的直徑,C是半徑OA上一點(diǎn),PC⊥AB,點(diǎn)D是半圓上位于PC右側(cè)的一點(diǎn),連接AD交線段PC于點(diǎn)E,且PD=PE.
(1)求證:PD是⊙O的切線;
(2)若⊙O的半徑為4,PC=8,設(shè)OC=x,PD2=y.
①求y關(guān)于x的函數(shù)關(guān)系式;
②當(dāng)x=1時(shí),求tan∠BAD的值.

【答案】分析:(1)D要證明PD是⊙O的切線,只需證明OD和PD垂直即可.
(2)設(shè)PC與⊙O交于F點(diǎn),連接OF,根據(jù)勾股定理求得CF,PF的值,再根據(jù)切割線定理求出函數(shù)關(guān)系式,從而不難求得tan∠BAD的值.
解答:(1)證明:連接OD,則∠OAE=∠ODE,
∵PC⊥AB,
∴∠OAE+∠CEA=90°.
∵PD=PE,
∴∠CEA=∠PED=∠PDE.
∴∠ODE+∠PDE=90°.
即PD是⊙O的切線.

(2)解:①設(shè)PC與⊙O交于F點(diǎn),連接OF,
∵PC⊥AB,
∴在Rt△CFO中,CF=
∵⊙O的半徑為4,OC=x,
∴CF=
∵PD2=(8+)(8-)=48+x2
∴y=x2+48.
②當(dāng)x=1時(shí),y=49,即PD=PE=7,OC=1,
∴EC=1,AC=3.
∴tan∠BAD=
點(diǎn)評(píng):此題考查了切線的判定以及切割線定理等知識(shí)點(diǎn)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,AC是弦,點(diǎn)P從點(diǎn)B開(kāi)始沿BA邊向點(diǎn)A以1cm/s的速度移動(dòng),若AB長(zhǎng)為10cm,點(diǎn)O到AC的距離為4cm.
(1)求弦AC的長(zhǎng);
(2)問(wèn)經(jīng)過(guò)幾秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點(diǎn)B,OC與弦AD平行交BM于點(diǎn)C.
(1)求證:CD是半圓O的切線;
(2)若AB的長(zhǎng)為4,點(diǎn)D在半圓O上運(yùn)動(dòng),當(dāng)AD的長(zhǎng)為1時(shí),求點(diǎn)A到直線CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,點(diǎn)D是半圓上一動(dòng)點(diǎn),AB=10,AC=8,當(dāng)△ACD是等腰三角形時(shí),點(diǎn)D到AB的距離是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是半圓O的直徑,以O(shè)A為直徑的半圓O′與弦AC交于點(diǎn)D,O′E∥AC,并交OC于點(diǎn)E,則下列結(jié)論:①S△O′OE=
1
2
S△AOC2;②點(diǎn)D時(shí)AC的中點(diǎn);③
AC
=2AD;④四邊形O′DEO是菱形.其中正確的結(jié)論是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是半圓O的直徑,過(guò)點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,F(xiàn)為垂足,交AC于點(diǎn)C使∠BED=∠C.請(qǐng)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案