【題目】如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點(diǎn)D,BC是⊙O的切線(xiàn),EBC的中點(diǎn),連接AE、DE

1)求證:DE是⊙O的切線(xiàn);

2)設(shè)△CDE的面積為 S1,四邊形ABED的面積為 S2.若 S25S1,求tanBAC的值;

3)在(2)的條件下,若AE3,求⊙O的半徑長(zhǎng).

【答案】1)見(jiàn)解析;(2tanBAC;(3)⊙O的半徑=2

【解析】

1)連接DO,由圓周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根據(jù)EBC的中點(diǎn)可以得出DE=BE,就有∠EDB=EBD,OD=OB可以得出∠ODB=OBD,由等式的性質(zhì)就可以得出∠ODE=90°就可以得出結(jié)論.

2)由S2=5 S1可得△ADB的面積是△CDE面積的4倍,可求得ADCD=21,可得.則tanBAC的值可求;

3)由(2)的關(guān)系即可知,在RtAEB中,由勾股定理即可求AB的長(zhǎng),從而求⊙O的半徑.

解:(1)連接OD,

ODOB

∴∠ODB=∠OBD

AB是直徑,

∴∠ADB90°,

∴∠CDB90°

EBC的中點(diǎn),

DEBE,

∴∠EDB=∠EBD,

∴∠ODB+EDB=∠OBD+EBD,

即∠EDO=∠EBO

BC是以AB為直徑的⊙O的切線(xiàn),

ABBC,

∴∠EBO90°,

∴∠ODE90°,

DE是⊙O的切線(xiàn);

2)∵S25 S1

SADB2SCDB

∵△BDC∽△ADB

DB2ADDC

tanBAC==

3)∵tanBAC

,得BCAB

EBC的中點(diǎn)

BEAB

AE3,

∴在RtAEB中,由勾股定理得

,解得AB4

故⊙O的半徑RAB2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykx+b圖象與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,與反比例函數(shù)y在第二象限內(nèi)的圖象交于點(diǎn)C,CEx軸,tanABO,OB4,OE2

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)若點(diǎn)D是反比例函數(shù)在第四象限內(nèi)圖象上的點(diǎn),過(guò)點(diǎn)DDFy軸,垂足為點(diǎn)F,連接OD、BF,如果SBAF4SDFO,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生每天的睡眠情況,某初中學(xué)校從全校 800 名學(xué)生中隨機(jī)抽取了 40 名學(xué)生,調(diào)查了他們平均每天的睡眠時(shí)間(單位: h ,統(tǒng)計(jì)結(jié)果如下:

9,810.5,798109.5,89,9.57.5,9.59,8.57.5,10,9.58,9,

7,9.58.5,97,99,7.58.5,8.59,8,7.59.5,109.5,8.59,89.

在對(duì)這些數(shù)據(jù)整理后,繪制了如下的統(tǒng)計(jì)圖表:

睡眠時(shí)間分組統(tǒng)計(jì)表 睡眠時(shí)間分布情況

組別

睡眠時(shí)間分組

人數(shù)(頻數(shù))

1

7t8

m

2

8t9

11

3

9t10

n

4

10t11

4

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

1 m = n = a = , b =

2)抽取的這 40 名學(xué)生平均每天睡眠時(shí)間的中位數(shù)落在 組(填組別) ;

3)如果按照學(xué)校要求,學(xué)生平均每天的睡眠時(shí)間應(yīng)不少于 9 h,請(qǐng)估計(jì)該校學(xué)生中睡眠時(shí)間符合要求的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花卉種植基地準(zhǔn)備圍建一個(gè)面積為100平方米的矩形苗圃園種植玫瑰花,其中一邊靠墻,另外三邊用29米長(zhǎng)的籬笆圍成.已知墻長(zhǎng)為18米,為方便進(jìn)入,在墻的對(duì)面留出1米寬的門(mén)(如圖所示),求這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】元旦節(jié)前夕,某花店購(gòu)進(jìn)康乃馨和玫瑰兩種鮮花,銷(xiāo)售過(guò)程中發(fā)現(xiàn)康乃馨比玫瑰銷(xiāo)量大,店主決定將玫瑰每枝降價(jià)2元促銷(xiāo),降價(jià)后80元可購(gòu)買(mǎi)玫瑰的數(shù)量是原來(lái)可購(gòu)買(mǎi)玫瑰數(shù)量的1.25倍.

(1)試問(wèn):降價(jià)后每枝玫瑰的售價(jià)是多少元?

(2)根據(jù)銷(xiāo)售情況,店主用不多于1000元的資金再次購(gòu)進(jìn)兩種鮮花共180枝,康乃馨進(jìn)價(jià)為6元/枝,玫瑰的進(jìn)價(jià)是5元/枝。試問(wèn);至少需要購(gòu)進(jìn)多少枝玫瑰?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種商品的標(biāo)價(jià)為500/件,經(jīng)過(guò)兩次降價(jià)后的價(jià)格為405/件,并且兩次降價(jià)的百分率相同.

1)求該種商品每次降價(jià)的百分率;

2)若該種商品進(jìn)價(jià)為400/件,兩次降價(jià)共售出此種商品100件,為使兩次降價(jià)銷(xiāo)售的總利潤(rùn)不少于3200元.問(wèn)第一次降價(jià)后至少要售出該種商品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】任大叔決定在承包的荒山上種櫻桃樹(shù),第一次用1000元購(gòu)進(jìn)了一批樹(shù)苗,第二次又用1000元購(gòu)進(jìn)該種樹(shù)苗,但這次每棵樹(shù)苗的進(jìn)價(jià)是第一次進(jìn)價(jià)的2,購(gòu)進(jìn)數(shù)量比第次少了100棵;

(1)求第一次每棵樹(shù)苗的進(jìn)價(jià)是多少元?

(2)一年后,樹(shù)苗的成活率為85%,每棵櫻桃樹(shù)平均產(chǎn)櫻桃30,任大叔將兩批櫻桃樹(shù)所產(chǎn)櫻桃按同一價(jià)格全部銷(xiāo)售完畢后,獲利不低于89800,求每斤櫻桃的售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AD為∠CAB的平分線(xiàn),點(diǎn)OAB上,⊙O經(jīng)過(guò)點(diǎn)AD兩點(diǎn),與ACAB分別交于點(diǎn)E,F

1)求證:BC與⊙O相切;

2)若AC8,AF10,求ADBC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小明設(shè)計(jì)的作三角形的高線(xiàn)的尺規(guī)作圖過(guò)程.

已知:ABC

求作:BC邊上的高線(xiàn).

作法:如圖,

①以點(diǎn)C為圓心,CA為半徑畫(huà)。

②以點(diǎn)B為圓心,BA為半徑畫(huà)弧,兩弧相交于點(diǎn)D;

③連接AD,交BC的延長(zhǎng)線(xiàn)于點(diǎn)E

所以線(xiàn)段AE就是所求作的BC邊上的高線(xiàn).

根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面證明.

證明:∵CA=CD,

∴點(diǎn)C在線(xiàn)段AD的垂直平分線(xiàn)上( (填推理的依據(jù)).

=

∴點(diǎn)B在線(xiàn)段AD的垂直平分線(xiàn)上.

BC是線(xiàn)段AD的垂直平分線(xiàn).

ADBC

AE就是BC邊上的高線(xiàn).

查看答案和解析>>

同步練習(xí)冊(cè)答案