【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)連接FO,由F為BC的中點,AO=CO,得到OF∥AB,由于AC是⊙O的直徑,得出CE⊥AE,根據(jù)OF∥AB,得出OF⊥CE,于是得到OF所在直線垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到結(jié)論.
(2)證出△AOE是等邊三角形,得到∠EOA=60°,再由直角三角形的性質(zhì)即可得到結(jié)果.
試題解析:(1)如圖1,連接FO,
∵F為BC的中點,AO=CO,
∴OF∥AB,
∵AC是⊙O的直徑,
∴CE⊥AE,
∵OF∥AB,
∴OF⊥CE,
∴OF所在直線垂直平分CE,
∴FC=FE,OE=OC,
∴∠FEC=∠FCE,∠0EC=∠0CE,
∵∠ACB=90°,
即:∠0CE+∠FCE=90°,
∴∠0EC+∠FEC=90°,
即:∠FEO=90°,
∴FE為⊙O的切線;
(2)如圖2,
∵⊙O的半徑為3,
∴AO=CO=EO=3,
∵∠EAC=60°,OA=OE,
∴∠EOA=60°,
∴∠COD=∠EOA=60°,
∵在Rt△OCD中,∠COD=60°,OC=3,
∴CD=,
∵在Rt△ACD中,∠ACD=90°,
CD=,AC=6,
∴AD=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列二次函數(shù)的圖象與x軸有兩個不同的交點的是( 。
A. y=x2 B. y=x2+4 C. y=3x2﹣2x+5 D. y=3x2+5x﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=﹣x+1與x軸,y軸分別交于A,B兩點,點P,Q是直線l上的兩個動點,且點P在第二象限,點Q在第四象限,∠POQ=135°.
(1)求△AOB的周長;
(2)設(shè)AQ=t>0,試用含t的代數(shù)式表示點P的坐標(biāo);
(3)當(dāng)動點P,Q在直線l上運(yùn)動到使得△AOQ與△BPO的周長相等時,記tan∠AOQ=m,若過點A的二次函數(shù)y=ax2+bx+c同時滿足以下兩個條件:
①6a+3b+2c=0;
②當(dāng)m≤x≤m+2時,函數(shù)y的最大值等于,求二次項系數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P為直線m外一點,點A,B,C為直線m上三點,PA=4cm,PB=5cm,PC=2cm,則點P到直線m的距離為( )
A. 4cm B. 2cm C. 小于2cm D. 不大于2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在x軸的上方,直角∠BOA繞原點O按順時針方向旋轉(zhuǎn),若∠BOA的兩邊分別與函數(shù)y=-、y=的圖象交于B、A兩點,則∠OAB的大小的變化趨勢為( )
A.逐漸變小 B.逐漸變大 C.時大時小 D.保持不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:①因為∠1與∠2是對頂角,所以∠1=∠2;②因為∠1與∠2是鄰補(bǔ)角,所以∠1=∠2;③因為∠1與∠2不是對頂角,所以∠1≠∠2;④因為∠1與∠2不是鄰補(bǔ)角,所以∠1+∠2≠180°.
其中正確的有__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A、C的坐標(biāo)分別為(10,0),(0,4),點D是OA的中點,點P在BC上運(yùn)動,當(dāng)ΔODP是腰長為5的等腰三角形時,點P的坐標(biāo)為___________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com