【題目】《九章算術(shù)》勾股章的問題::今有二人同所立,甲行率七,乙行率三,乙東行,甲南行十步而斜東北與乙會.問甲、乙各行幾何?大意是說:如圖,甲乙二人從A處同時出發(fā),甲的速度與乙的速度之比為7:3,乙一直向東走,甲先向南走十步到達(dá)C處,后沿北偏東某方向走了一段距離后與乙在B處相遇,這時,甲乙各走了多遠(yuǎn)?

【答案】甲行24.5步,乙行10.5步.

【解析】甲乙同時出發(fā)二者速度比是7:3,設(shè)相遇時甲行走了7t,乙行走了3t根據(jù)二者的路程關(guān)系可列方程求解.

設(shè)經(jīng)x秒二人在B處相遇,這時乙共行AB=3x,

甲共行AC+BC=7x,

∵AC=10,

∴BC=7x-10,

又∵∠A=90°,

∴BC2=AC2+AB2,

∴(7x-10)2=102+(3x)2

解得:x1=0(舍去),x2=3.5,

∴AB=3x=10.5,

AC+BC=7x=24.5.

答:甲行24.5步,乙行10.5步.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實踐操作:在矩形ABCD中,AB4,AD3,現(xiàn)將紙片折疊,點D的對應(yīng)點記為點P,折痕為EF(點E、F是折痕與矩形的邊的交點),再將紙片還原.

初步思考:

1)若點P落在矩形ABCD的邊AB上(如圖①)

①當(dāng)點P與點A重合時,∠DEF   °;當(dāng)點E與點A重合時,∠DEF   °;

②當(dāng)點EAB上,點FDC上時(如圖②),

求證:四邊形DEPF為菱形,并直接寫出當(dāng)AP3.5時的菱形EPFD的邊長.

深入探究

2)若點P落在矩形ABCD的內(nèi)部(如圖③),且點EF分別在AD、DC邊上,請直接寫出AP的最小值   

拓展延伸

3)若點F與點C重合,點EAD上,線段BA與線段FP交于點M(如圖④).在各種不同的折疊位置中,是否存在某一情況,使得線段AM與線段DE的長度相等?若存在,請直接寫出線段AE的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)學(xué)雷鋒、樹新風(fēng)、做文明中學(xué)生號召,某校開展了志愿者服務(wù)活動,活動項目有戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)等五項,活動期間,隨機抽取了部分學(xué)生對志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.

(1)被隨機抽取的學(xué)生共有多少名?

(2)在扇形統(tǒng)計圖中,求活動數(shù)為3項的學(xué)生所對應(yīng)的扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;

(3)該校共有學(xué)生2000人,估計其中參與了4項或5項活動的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EAD中點,將ABE沿直線BE折疊后得到GBE,延長BGCDF,若AB=6,BC=CF的長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,O是對角線的交點,AF平分BAC,DHAF于點H,交ACG,DH延長線交AB于點E,求證:BE=2OG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“低碳環(huán)保,你我同行”.儀征市區(qū)的公共自行車給市民出行帶來不少方便.我校數(shù)學(xué)社團小學(xué)員走進(jìn)小區(qū)隨機選取了市民進(jìn)行調(diào)查,調(diào)查的問題是“您大概多久使用一次公共自行車?”,將本次調(diào)查結(jié)果歸為四種情況: A.每天都用;B.經(jīng)常使用;C.偶爾使用;D.從未使用.
將這次調(diào)查情況整理并繪制如下兩幅統(tǒng)計圖:
根據(jù)圖中的信息,解答下列問題:
(1)本次活動共有位市民參與調(diào)查;
(2)補全條形統(tǒng)計圖;
(3)根據(jù)統(tǒng)計結(jié)果,若市區(qū)有26萬市民,請估算每天都用公共自行車的市民約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=BC,以AB為直徑的⊙O與AC交于點D,過點D作DF⊥BC,交AB的延長線于E,垂足為F.
(1)如圖①,求證直線DE是⊙O的切線;
(2)如圖②,作DG⊥AB于H,交⊙O于G,若AB=5,AC=8,求DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,,在邊上,且,將沿對折至,延長交邊于點,連接、.則下列結(jié)論:①;.其中正確的是( )

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD 內(nèi)接于⊙O,BD是⊙O的直徑,過點A作⊙O的切線AE交CD的延長線于點E,DA平分∠BDE.
(1)求證:AE⊥CD;
(2)已知AE=4cm,CD=6cm,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案