【題目】如圖,已知P是⊙O外一點,Q是⊙O上的動點,線段PQ的中點為M,連接OP,OM.若⊙O的半徑為2,OP=4,則線段OM的最小值是(  )

A.0
B.1
C.2
D.3

【答案】B
【解析】解:設(shè)OP與⊙O交于點N,連結(jié)MN,OQ,如圖,

∵OP=4,ON=2,
∴N是OP的中點,
∵M為PQ的中點,
∴MN為△POQ的中位線,
∴MN=OQ=×2=1,
∴點M在以N為圓心,1為半徑的圓上,
當(dāng)點M在ON上時,OM最小,最小值為1,
∴線段OM的最小值為1.
故選B.
【考點精析】通過靈活運用三角形中位線定理和點和圓的三種位置關(guān)系,掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;圓和點的位置關(guān)系:以點P與圓O的為例(設(shè)P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D是BC的中點,BF⊥AC于點F,交AD于點E,∠BAC=45°.求證:△AEF≌△BCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E、F為對角線AC上的兩點,且AE=CF,連接DE、BF.

(1)寫出圖中所有的全等三角形;
(2)求證:DE∥BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗君花卉基地出售兩種盆栽花卉:太陽花6元/盆,繡球花10元/盆.若一次購買的繡球花超過20盆時,超過20盆部分的繡球花價格打8折.
(1)分別寫出兩種花卉的付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式;
(2)為了美化環(huán)境,花園小區(qū)計劃到該基地購買這兩種花卉共90盆,其中太陽花數(shù)量不超過繡球花數(shù)量的一半.兩種花卉各買多少盆時,總費用最少,最少費用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“全民閱讀”深入人心,好讀書,讀好書,讓人終身受益.為滿足同學(xué)們的讀書需求,學(xué)校圖書館準(zhǔn)備到新華書店采購文學(xué)名著和動漫書兩類圖書.經(jīng)了解,20本文學(xué)名著和40本動漫書共需1520元,20本文學(xué)名著比20本動漫書多440元(注:所采購的文學(xué)名著價格都一樣,所采購的動漫書價格都一樣).
(1)求每本文學(xué)名著和動漫書各多少元?
(2)若學(xué)校要求購買動漫書比文學(xué)名著多20本,動漫書和文學(xué)名著總數(shù)不低于72本,總費用不超過2000元,請求出所有符合條件的購書方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+b的圖象與反比例函數(shù)y=的圖象交于點A和點B(﹣2,n),與x軸交于點C(﹣1,0),連接OA.

(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若點P在坐標(biāo)軸上,且滿足PA=OA,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB是⊙O的直徑,點C在圓上,∠AOC=80°,點P是線段AB延長線上的一動點,連接PC,則∠APC的度數(shù)是 度(寫出一個即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次知識競賽有20道必答題,每一題答對得10分,答錯或不答都扣5分;3道搶答題,每一題搶答對得10分,搶答錯扣20分,搶答不到不得分也不扣分.甲乙兩隊決賽,甲隊必答題得了170分,乙隊必答題只答錯了1題.
(1)甲隊必答題答對答錯各多少題?
(2)搶答賽中,乙隊搶答對了第1題,又搶到了第2題,但還沒作答時,甲隊啦啦隊隊員小黃說:“我們甲隊輸了!”小汪說:“小黃的話不一定對!”請你舉一例說明“小黃的話”有何不對.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(m,6)、B(n,1)在反比例函數(shù)圖象上,AD⊥x軸于點D,BC⊥x軸于點C,DC=5.

(1)求m、n的值并寫出該反比例函數(shù)的解析式.
(2)點E在線段CD上,S△ABE=10,求點E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案