【題目】一種火爆的網(wǎng)紅電子產(chǎn)品,每件產(chǎn)品成本元、工廠將該產(chǎn)品進(jìn)行網(wǎng)絡(luò)批發(fā),批發(fā)單價(jià)(元)與一次性批發(fā)量(件)(為正整數(shù))之間滿足如圖所示的函數(shù)關(guān)系.
直接寫出與之間所滿足的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
若一次性批發(fā)量不超過件,當(dāng)批發(fā)量為多少件時(shí),工廠獲利最大?最大利潤是多少?
【答案】(1)當(dāng)且為整數(shù)時(shí), 當(dāng)且為整數(shù)時(shí), ;當(dāng)且為整數(shù)時(shí),;(2)一次批發(fā)件時(shí)所獲利潤最大,最大利潤是元.
【解析】
(1)根據(jù)函數(shù)圖像,求出各個部分的解析式即可;
(2)設(shè)所獲利潤(元),分段求出各個不發(fā)的利潤,再比較最大利潤即可求解.
解:當(dāng)且為整數(shù)時(shí),
當(dāng)且為整數(shù)時(shí), ;
當(dāng)且為整數(shù)時(shí),;
設(shè)所獲利潤(元),
當(dāng)且為整數(shù)時(shí),
元,
當(dāng)且為整數(shù)時(shí),w=480 ,
∴當(dāng)且為整數(shù)時(shí),
當(dāng)時(shí),最大,最大值為元.
答:一次批發(fā)件時(shí)所獲利潤最大,最大利潤是元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)P是AB上一動點(diǎn)(不與A,B重合),對角線AC,BD相交于點(diǎn)O,過點(diǎn)P分別作AC,BD的垂線,分別交AC,BD于點(diǎn)E,F(xiàn),交AD,BC于點(diǎn)M,N.下列結(jié)論:
①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤當(dāng)△PMN∽△AMP時(shí),點(diǎn)P是AB的中點(diǎn).
其中正確的結(jié)論有
A.5個 B.4個 C.3個 D.2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線 y x bx c 的頂點(diǎn)為 P,與 x 軸交于 A,B 兩點(diǎn).若 A,B 兩點(diǎn)間的距離為 m, n 是 m 的 函數(shù),且表示 n 與 m 的函數(shù)關(guān)系的圖象大致如圖2所示,則 n 可能為( )
A.PA ABB.PA ABC.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x﹣3的圖象與反比例函數(shù)y=(k≠0)的圖象交于點(diǎn)A與點(diǎn)B(a,﹣4).
(1)求反比例函數(shù)的表達(dá)式;
(2)一次函數(shù)y=x﹣3的圖象與x軸交于點(diǎn)M,連接OB,求△OBM的面積;
(3)若動點(diǎn)P是第一象限內(nèi)雙曲線上的點(diǎn)(不與點(diǎn)A重合),連接OP,且過點(diǎn)P作y軸的平行線交直線AB于點(diǎn)C,連接OC,若△POC的面積為3,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=3AB=6.點(diǎn)P是AD的中點(diǎn),點(diǎn)E在BC上,CE=2BE,點(diǎn)M、N在線段BD上,若△PMN是等腰三角形且底角與∠DEC相等,則MN=______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y=(x>0)的圖象分別交于點(diǎn) A(m,3)和點(diǎn)B(6,n),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.
(1)求直線AB的解析式;
(2)若點(diǎn)P是x軸上一動點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是AC邊上的中點(diǎn),連結(jié)BD,把△BDC′沿BD翻折,得到△,DC與AB交于點(diǎn)E,連結(jié),若AD=AC′=2,BD=3則點(diǎn)D到BC的距離為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx2﹣(2m+1)x+m﹣4的圖象與x軸有兩個公共點(diǎn),m取滿足條件的最小的整數(shù)
(1)求此二次函數(shù)的解析式
(2)當(dāng)n≤x≤1時(shí),函數(shù)值y的取值范圍是﹣5≤y≤1﹣n,求n的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com