【題目】解不等式組;請(qǐng)結(jié)合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得____________________;

(Ⅱ)解不等式②,得____________________;

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來(lái):

(Ⅳ)原不等式組的解集為_(kāi)______________________.

【答案】(Ⅰ);(Ⅱ);(Ⅲ)見(jiàn)解析;(Ⅳ).

【解析】

I)先移項(xiàng)合并,再未知數(shù)的系數(shù)化為1,即可得到不等式的解集;
II)先移項(xiàng)合并,再未知數(shù)的系數(shù)化為1,即可得到不等式的解集;
III)根據(jù)求出每一個(gè)不等式的解集,將解集表示在數(shù)軸上表示出來(lái);
IV)取不等式①②的解集的公共部分即可.

解:(Ⅰ).解不等式①,得,

故答案為:

(Ⅱ)解不等式②,得

故答案為:,

III)把不等式①和②的解集在數(shù)軸上表示出來(lái).如圖:

IV)原不等式組的解集為: ;

故答案為: ;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB5BC12,將矩形繞著點(diǎn)D順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)C落在對(duì)角線BD上的點(diǎn)E處時(shí),點(diǎn)AB分別落在點(diǎn)G、F處,那么AGBFCE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,二次函數(shù)yax2+bx+ca0)的圖象如圖所示,現(xiàn)給出下列結(jié)論:①abc0;②c+2a0;③9a3b+c0;④abam2+bmm為實(shí)數(shù));⑤4acb20.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長(zhǎng)線上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由DAM平移得到.若過(guò)點(diǎn)E作EHAC,H為垂足,則有以下結(jié)論:點(diǎn)M位置變化,使得DHC=60°時(shí),2BE=DM;無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,都有DM=HM;③無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,CHM一定大于135°.其中正確結(jié)論的序號(hào)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y1k1x+b的圖象與x軸、y軸分別交于AB兩點(diǎn),與反比例函數(shù)y2的圖象分別交于CD兩點(diǎn),點(diǎn)D2,﹣3),OA2

1)求一次函數(shù)y1k1x+b與反比例函數(shù)y2的解析式;

2)直接寫出k1x+b0時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB繞著點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)120°得到線段AC,點(diǎn)B對(duì)應(yīng)點(diǎn)C,在∠BAC的內(nèi)部有一點(diǎn)P,PA8PB4,PC4,則線段AB的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線yax2+a+2x+2a≠0)與x軸交于點(diǎn)A40)和點(diǎn)C,與y軸交于點(diǎn)B

1)求拋物線解析式和點(diǎn)B坐標(biāo);

2)在x軸上有一動(dòng)點(diǎn)Pm,0)過(guò)點(diǎn)Px軸的垂線交直線AB于點(diǎn)N,交拋物線與點(diǎn)M,當(dāng)點(diǎn)M位于第一象限圖象上,連接AM,BM,求△ABM面積的最大值及此時(shí)M點(diǎn)的坐標(biāo);

3)如圖2,點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)為D,連接ADBC

①填空:點(diǎn)P是線段AC上一點(diǎn)(不與點(diǎn)A、C重合),點(diǎn)Q是線段AB上一點(diǎn)(不與點(diǎn)A、B重合),則兩條線段之和PQ+BP的最小值為   

②填空:將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)aα180°),當(dāng)點(diǎn)C的對(duì)應(yīng)點(diǎn)C落在△ABD的邊所在直線上時(shí),則此時(shí)點(diǎn)B的對(duì)應(yīng)點(diǎn)B的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EAB邊上的一點(diǎn),以DE為邊作正方形DEFG,DFBC交于點(diǎn)M,延長(zhǎng)EMGF于點(diǎn)H,EFGB交于點(diǎn)N,連接CG.

1)求證:CDCG

2)若tanMEN=,求的值;

3)已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在運(yùn)動(dòng)過(guò)程中,EM的長(zhǎng)能否為?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,正方形ABCD和正方形AEFG,連接DGBE

1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖2,①線段DGBE之間的數(shù)量關(guān)系是   ;②直線DG與直線BE之間的位置關(guān)系是   

2)探究:如圖3,若四邊形ABCD與四邊形AEFG都為矩形,且AD2ABAG2AE,證明:直線DGBE

3)應(yīng)用:在(2)情況下,連結(jié)GE(點(diǎn)EAB上方),若GEAB,且AB,AE1,則線段DG是多少?(直接寫出結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案