【題目】在數(shù)軸上,若AB、C三點(diǎn)滿足AC=2CB,則稱C是線段AB的相關(guān)點(diǎn).當(dāng)點(diǎn)C在線段AB上時(shí),稱C為線段AB的內(nèi)相關(guān)點(diǎn),當(dāng)點(diǎn)C在線段AB延長(zhǎng)線上時(shí),稱C為線段AB的外相關(guān)點(diǎn).

如圖1,當(dāng)A對(duì)應(yīng)的數(shù)為5B對(duì)應(yīng)的數(shù)為2時(shí),則表示數(shù)3的點(diǎn)C是線段AB的內(nèi)相關(guān)點(diǎn),表示數(shù)-1的點(diǎn)D是線段AB的外相關(guān)點(diǎn).

1)如圖2,A、B表示的數(shù)分別為5-1,則線段AB的內(nèi)相關(guān)點(diǎn)表示的數(shù)為______,線段AB的外相關(guān)點(diǎn)表示的數(shù)為________.

2)在(1)的條件下,點(diǎn)P、點(diǎn)Q分別從A點(diǎn)、B點(diǎn)同時(shí)出發(fā),點(diǎn)P、點(diǎn)Q分別以3個(gè)單位/秒和2個(gè)單位/秒的速度向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t.

①當(dāng)PQ=7時(shí),求t.

②設(shè)線段PQ的內(nèi)相關(guān)點(diǎn)為M,外相關(guān)點(diǎn)為N.直接寫出M、N所對(duì)應(yīng)的數(shù)為相反數(shù)時(shí)t的取值.

【答案】(1)1,-7;(2)① 當(dāng)PQ=7時(shí),t=1;②t=1.8

【解析】

1)根據(jù)內(nèi)相關(guān)點(diǎn)和外相關(guān)點(diǎn)的定義列出等式求解即可;

2)①根據(jù)“路程=速度時(shí)間”以及點(diǎn)AB表示的數(shù)求出點(diǎn)PQ表示的數(shù),然后根據(jù)列出等式求解即可;

②同(1)的方法一樣,分別求出點(diǎn)MN表示的數(shù),再根據(jù)相反數(shù)的定義列出等式求解即可.

1)設(shè)線段AB的內(nèi)相關(guān)點(diǎn)表示的數(shù)為a

得,

解得

設(shè)線段AB的外相關(guān)點(diǎn)表示的數(shù)為b

得,

解得

故答案為:

2)①運(yùn)動(dòng)時(shí)間為t

點(diǎn)P對(duì)應(yīng)的數(shù)為,點(diǎn)Q對(duì)應(yīng)的數(shù)為,并且點(diǎn)P在點(diǎn)Q右側(cè)

當(dāng)時(shí),,解得;

②同(1)可得:內(nèi)相關(guān)點(diǎn)M表示的數(shù)為

外相關(guān)點(diǎn)N表示的數(shù)為

由相反數(shù)的定義得,

解得

t的值為1.8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,點(diǎn)EAD上一點(diǎn),BE ACF點(diǎn).

(1)若AE=AD,△AEF的面積為1時(shí),求△ABC的面積;

(2)若AD = 4,tanEAF =,求AF的長(zhǎng);

(3)若tanEAF =,連接DF,證明DF=AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.我們規(guī)定,有理數(shù)的整數(shù)部分就是取其最接近的兩個(gè)整數(shù)中的最小整數(shù),小數(shù)部分就是用原數(shù)減去整數(shù)部分,比如,小數(shù)3.25,最接近的兩個(gè)整數(shù)就是34,則整數(shù)部分取3,小數(shù)部分就是3.25-3=0.25,

13.14的整數(shù)部分是 ,小數(shù)部分是 ;

2-3.6的整數(shù)部分是 ,小數(shù)部分是 ;

3)如果一個(gè)數(shù)的整數(shù)部分比小數(shù)部分大88.11,且整數(shù)部分的值恰好是小數(shù)部分的100倍,求這個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,O點(diǎn)在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過點(diǎn)DBC的平行線,與AB的延長(zhǎng)線相交于點(diǎn)P

1)求證:PD是⊙O的切線;

2)求證:PBD∽△DCA

3)當(dāng)AB=6,AC=8時(shí),求線段PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某電腦公司有A型,B型,C型三種型號(hào)的電腦,其價(jià)格分別為A型每臺(tái)6000元,B型每臺(tái)4000元,C型每臺(tái)2500 ,某市實(shí)驗(yàn)中學(xué)計(jì)劃將100500元錢全部用于從該電腦公司購進(jìn)電腦共36臺(tái)

1)若全部購進(jìn)的是兩種不同型號(hào)的電腦,請(qǐng)你設(shè)計(jì)出幾種不同的購買方案方案供該校選擇,并說出理由;

2)能否同時(shí)購進(jìn)三種型號(hào)的電腦,若能,請(qǐng)?jiān)O(shè)計(jì)出購買方案;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在求1+2+22+23+24+25+26的值時(shí),小明發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的2倍,于是他設(shè):S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.

(1)1+3+32+33+34+35+36的值

(2)1+a+a2+a3+…+a2013(a≠0a≠1)的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一長(zhǎng)方形AOBC紙片放在如圖所示的坐標(biāo)系中,且長(zhǎng)方形的兩邊的比為OA:AC=2:1.

(1)求直線OC的解析式;

(2)求出=-5時(shí),函數(shù)的值;

(3)求出=-5時(shí),自變量的值;

(4)畫這個(gè)函數(shù)的圖象;

(5)根據(jù)圖象回答,當(dāng)從2減小到-3時(shí),的值是如何變化的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人民商場(chǎng)準(zhǔn)備購進(jìn)甲、乙兩種牛奶進(jìn)行銷售,若甲種牛奶的進(jìn)價(jià)比乙種牛奶的進(jìn)價(jià)每件少5元,其用90元購進(jìn)甲種牛奶的數(shù)量與用100元購進(jìn)乙種牛奶的數(shù)量相同.

1)求甲種牛奶、乙種牛奶的進(jìn)價(jià)分別是多少元?

2)若該商場(chǎng)購進(jìn)甲種牛奶的數(shù)量是乙種牛奶的3倍少5件,該商場(chǎng)甲種牛奶的銷售價(jià)格為49元,乙種牛奶的銷售價(jià)格為每件55元,則購進(jìn)的甲、乙兩種牛奶全部售出后,可使銷售的總利潤(rùn)(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))等于371元,請(qǐng)通過計(jì)算求出該商場(chǎng)購進(jìn)甲、乙兩種牛奶各自多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某河流受暴雨影響,水位不斷上漲,下面是某天此河流的水位記錄:

時(shí)間(時(shí))

0

4

8

12

16

20

24

水位(米)

2

2.5

3

4

5

6

8

1)上表反映的是哪兩個(gè)量之間的關(guān)系?自變量和因變量各是什么?

2)根據(jù)表格畫了表示兩個(gè)變量的折線統(tǒng)計(jì)圖.

3)哪段時(shí)間水位上升得最快?

查看答案和解析>>

同步練習(xí)冊(cè)答案