【題目】如圖,線段AB8,射線BGAB,P為射線BG上一點,連接AP,APCPAP=CP,連接AC,PD平分∠APC,C、D與點BAP兩側(cè),在線段DP取一點E,使∠EAP=∠BAP,連接CE與線段AB相交于點F(F與點AB不重合).

(1)求證:AEP≌△CEP;

(2)判斷CFAB的位置關(guān)系,并說明理由;

(3)求△AEF的周長.

【答案】1)證明見解析;(2CFAB,理由見解析;(316.

【解析】

由PD平分∠APC,AP=CP,可得∠APD=∠CPD,從而證得△AEP≌△CEP;由△AEP≌△CEP,可得∠EAP=∠ECP,根據(jù)等量代換可得∠AMF+∠PAB=90°,從而得出位置關(guān)系;過點 C 作CN⊥PB.可證得△PCN≌△APB

解: (1)∵DP平分∠APC, PC=PA,

∴∠APD=∠CPD=45°,

又因為PE=PE,

∴△AEP≌△CEP(SAS);

(2)CF⊥AB.

理由如下:∵△AEP≌△CEP,

∴∠EAP=∠ECP,

∵∠EAP=∠BAP.

∴∠BAP=∠FCP,

∵∠FCP+∠CMP=90°,∠AMF=∠CMP,

∴∠AMF+∠PAB=90°,

∴∠AFM=90°,

∴CF⊥AB;

(3)過點 C 作CN⊥PB.可證得△PCN≌△APB,

∴CN=PB=BF,PN=AB,

∵△AEP≌△CEP,

∴AE=CE,

∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=2 AB=16.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我省某地區(qū)為了了解2016年初中畢業(yè)生畢業(yè)去向,對部分九年級學(xué)生進行了抽樣調(diào)查,就九年級學(xué)生畢業(yè)后的四種去向:A.讀普通高中;B.讀職業(yè)高中;C.直接進入社會就業(yè);D.其他(如出國等)進行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(如圖1,如圖2)

(1)填空:該地區(qū)共調(diào)查了 名九年級學(xué)生;

(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;

(3)若該地區(qū)2016年初中畢業(yè)生共有3500人,請估計該地區(qū)今年初中畢業(yè)生中讀普通高中的學(xué)生人數(shù);

(4)老師想從甲,乙,丙,丁4位同學(xué)中隨機選擇兩位同學(xué)了解他們畢業(yè)后的去向情況,請用畫樹狀圖或列表的方法求選中甲同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點分別在射線上移動,的平分線與的外角平分線交于點.

1)當(dāng)時, .

2)請你猜想:隨著兩點的移動,的度數(shù)大小是否變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,∠BAC=90°,ADBCD,ACB的平分線交ADE,交ABF,FGBCG,請猜測AEFG之間有怎樣的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初三年200名學(xué)生參加某次測評,從中隨機抽取了20名學(xué)生,記錄他們的分數(shù),整理得到如下頻數(shù)分布直方圖:

從總體的200名學(xué)生中隨機抽取一人,估計其分數(shù)小于70的概率是______;

樣本中分數(shù)的中位數(shù)在______組;

已知樣本中有的男生分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等試估計總體中男生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就學(xué)生體育活動興趣愛好的問題,隨機調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:

1)在這次調(diào)查中,喜歡籃球項目的同學(xué)有   人,在扇形統(tǒng)計圖中,乒乓球的百分比為   %,如果學(xué)校有800名學(xué)生,估計全校學(xué)生中有   人喜歡籃球項目.

2)請將條形統(tǒng)計圖補充完整.

3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機抽取2名同學(xué)代表班級參加;@球隊,請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖乙,是有公共頂點的等腰直角三角形,,點P為射線BD,CE的交點.

如圖甲,將繞點A旋轉(zhuǎn),當(dāng)C、D、E在同一條直線上時,連接BD、BE,則下列給出的四個結(jié)論中,其中正確的是______.

,,把繞點A旋轉(zhuǎn),

當(dāng)時,求PB的長;

求旋轉(zhuǎn)過程中線段PB長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用畫樹狀圖列表列舉等方法給出分析過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OB平分CBA,CO平分ACB,且MNBC,設(shè)AB=12,BC=24,AC=18,則AMN的周長為( )

A.30 B.33 C.36 D.39

查看答案和解析>>

同步練習(xí)冊答案