【題目】如圖,點 P 是∠AOB 內(nèi)部一定點
(1)若∠AOB=50°,作點 P 關(guān)于 OA 的對稱點 P1,作點 P 關(guān)于 OB 的對稱點 P2,連 OP1、OP2,則∠P1OP2=___.
(2)若∠AOB=α,點 C、D 分別在射線 OA、OB 上移動,當△PCD 的周長最小時,則∠CPD=___(用 α 的代數(shù)式表示).
【答案】100° 180°-2α
【解析】
(1)根據(jù)對稱性證明∠P1OP2=2∠AOB,即可解決問題;
(2)如圖,作點P關(guān)于OA的對稱點P1,作點P關(guān)于OB的對稱點P2,連P1P2交OA于C,交OB于D,連接PC,PD,此時△PCD的周長最。茫1)中結(jié)論,根據(jù)對稱性以及三角形內(nèi)角和定理即可解決問題;
(1)如圖,
由對稱性可知:∠AOP=∠AOP1,∠POB=∠BOP2,
∴∠P1OP2=2∠AOB=100°,
故答案為100°.
(2)如圖,作點P關(guān)于OA的對稱點P1,作點P關(guān)于OB的對稱點P2,連P1P2交OA于C,交OB于D,連接PC,PD,此時△PCD的周長最。
根據(jù)對稱性可知:∠OP1C=∠OPC,∠OP2D=∠OPD,∠P1OP2=2∠AOB=2α.
∴∠CPD=∠OP1C+∠OP2D=180°-2α.
故答案為180°-2α.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE和△BC′F的周長之和為( 。
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面中兩條直線l1和l2相交于點O,對于平面上任意點M,若p,q分別是M到直線l1和l2的距離,則稱有序非負實數(shù)對(p,q)是點M的“距離坐標”.根據(jù)上述定義,有以下幾個結(jié)論:①“距離坐標”是(0,2)的點有1個;②“距離坐標”是(3,4)的點有4個;③“距離坐標”(p,q)滿足p=q的點有4個.其中正確的有( 。
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列一元一次方程解應(yīng)用題:
學(xué)生在素質(zhì)教育基地進行社會實踐活動,幫助農(nóng)民伯伯采摘了黃瓜和茄子共80千克,了解到這些蔬菜的種植成本共180元,還了解到如下信息:
(1)求采摘的黃瓜和茄子各多少千克?
(2)這些采摘的黃瓜和茄子可賺多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB邊上一動點,PD⊥AC于點D,點E在P的右側(cè),且PE=1,連結(jié)CE.P從點A出發(fā),沿AB方向運動,當E到達點B時,P停止運動.在整個運動過程中,圖中陰影部分面積S1+S2的大小變化情況是( )
A. 一直減小B. 一直不變C. 先減小后增大D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過點A作AM⊥BD于點M,過點D作DN⊥AB于點N,且DN=,在DB的延長線上取一點P,滿足∠ABD=∠MAP+∠PAB,則AP=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請根據(jù)圖中提供的信息,回答下列問題:
(1)一個水瓶與一個水杯分別是多少元?
(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和20個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1,∠2互為補角,且∠3=∠B.
(1)求證:EF∥BC;
(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=﹣x+6與x軸交于A,與y軸交于B,直線CD與y軸交于C(0,2)與直線AB交于D,過D作DE⊥x軸于E(3,0).
(1)求直線CD的函數(shù)解析式;
(2)P是線段OA上一動點,點P從原點O開始,每秒一個單位長度的速度向A運動(P與O,A不重合),過P作x軸的垂線,分別與直線AB,CD交于M,N,設(shè)MN的長為S,P點運動的時間為t,求出S與t之間的函數(shù)關(guān)系式(寫出自變量的取值范圍)
(3)在(2)的條件下,當t為何值時,以M,N,E,D為頂點的四邊形是平行四邊形.(直接寫出結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com