因式分解a2b﹣b的正確結(jié)果是( 。

 

A.

b(a+1)(a﹣1)

B.

a(b+1)(b﹣1)

C.

b(a2﹣1)

D.

b(a﹣1)2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,等圓⊙O1和⊙O2相交于A、B兩點,⊙O1經(jīng)過⊙O2的圓心O2,連接AO1并延長交⊙O1于點C,則∠ACO2的度數(shù)為(  )

    A.                       60° B.                       45° C.                       30° D.   20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標系中,已知點P(0,4),點A在線段OP上,點B在x軸正半軸上,且AP=OB=t,0<t<4,以AB為邊在第一象限內(nèi)作正方形ABCD;過點C、D依次向x軸、y軸作垂線,垂足為M,N,設(shè)過O,C兩點的拋物線為y=ax2+bx+c.

(1)填空:△AOB≌△        ≌△BMC(不需證明);用含t的代數(shù)式表示A點縱坐標:A(0,      );

(2)求點C的坐標,并用含a,t的代數(shù)式表示b;

(3)當t=1時,連接OD,若此時拋物線與線段OD只有唯一的公共點O,求a的取值范圍;

(4)當拋物線開口向上,對稱軸是直線x=2﹣,頂點隨著的增大向上移動時,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖在坐標系中放置一菱形OABC,已知∠ABC=60°,OA=1.先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2014次,點B的落點依次為B1,B2,B3,…,則B2014的坐標為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,過A(1,0)、B(3,0)作x軸的垂線,分別交直線y=4﹣x于C、D兩點.拋物線y=ax2+bx+c經(jīng)過O、C、D三點.

(1)求拋物線的表達式;

(2)點M為直線OD上的一個動點,過M作x軸的垂線交拋物線于點N,問是否存在這樣的點M,使得以A、C、M、N為頂點的四邊形為平行四邊形?若存在,求此時點M的橫坐標;若不存在,請說明理由;

(3)若△AOC沿CD方向平移(點C在線段CD上,且不與點D重合),在平移的過程中△AOC與△OBD重疊部分的面積記為S,試求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,正方形ABCD的邊CD與正方形CGEF的邊CE重合,O是EG的中點,∠EGC的評分項GH過點D,交BE于H,連接OH、FH、EG與FH交于M,對于下面四個結(jié)論:

①GH⊥BE;②HOBG;③點H不在正方形CGFE的外接圓上;④△GBE∽△GMF.

其中正確的結(jié)論有( 。

 

A.

1個

B.

2個

C.

3個

D.

4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計算:(﹣1)2014+()﹣1+()0+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


早晨,小剛沿著通往學(xué)校唯一的一條路(直路)上學(xué),途中發(fā)現(xiàn)忘帶飯盒,停下往家里打電話,媽媽接到電話后帶上飯盒馬上趕往學(xué)校,同時小剛返回,兩人相遇后,小剛立即趕往學(xué)校,媽媽回家,15分鐘媽媽到家,再經(jīng)過3分鐘小剛到達學(xué)校,小剛始終以100米/分的速度步行,小剛和媽媽的距離y(單位:米)與小剛打完電話后的步行時間t(單位:分)之間的函數(shù)關(guān)系如圖,下列四種說法:

①打電話時,小剛和媽媽的距離為1250米;

②打完電話后,經(jīng)過23分鐘小剛到達學(xué)校;

③小剛和媽媽相遇后,媽媽回家的速度為150米/分;

④小剛家與學(xué)校的距離為2550米.其中正確的個數(shù)是( 。

    A.                       1個                             B.                             2個  C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點F在⊙O上,且滿足=,過點C作⊙O的切線交AB的延長線于D點,交AF的延長線于E點.

(1)求證:AE⊥DE;

(2)若tan∠CBA=,AE=3,求AF的長.

查看答案和解析>>

同步練習(xí)冊答案