如圖,過(guò)A(1,0)、B(3,0)作x軸的垂線,分別交直線y=4﹣x于C、D兩點(diǎn).拋物線y=ax2+bx+c經(jīng)過(guò)O、C、D三點(diǎn).
(1)求拋物線的表達(dá)式;
(2)點(diǎn)M為直線OD上的一個(gè)動(dòng)點(diǎn),過(guò)M作x軸的垂線交拋物線于點(diǎn)N,問(wèn)是否存在這樣的點(diǎn)M,使得以A、C、M、N為頂點(diǎn)的四邊形為平行四邊形?若存在,求此時(shí)點(diǎn)M的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若△AOC沿CD方向平移(點(diǎn)C在線段CD上,且不與點(diǎn)D重合),在平移的過(guò)程中△AOC與△OBD重疊部分的面積記為S,試求S的最大值.
解:(1)由題意,可得C(1,3),D(3,1).
∵拋物線過(guò)原點(diǎn),∴設(shè)拋物線的解析式為:y=ax2+bx.
∴,解得,
∴拋物線的表達(dá)式為:y=﹣x2+x.
(2)存在.
設(shè)直線OD解析式為y=kx,將D(3,1)代入求得k=,
∴直線OD解析式為y=x.
設(shè)點(diǎn)M的橫坐標(biāo)為x,則M(x,x),N(x,﹣x2+x),
∴MN=|yM﹣yN|=|x﹣(﹣x2+x)|=|x2﹣4x|.
由題意,可知MN∥AC,因?yàn)橐訟、C、M、N為頂點(diǎn)的四邊形為平行四邊形,則有MN=AC=3.
∴|x2﹣4x|=3.
若x2﹣4x=3,整理得:4x2﹣12x﹣9=0,解得:x=或x=;
若x2﹣4x=﹣3,整理得:4x2﹣12x+9=0,解得:x=.
∴存在滿足條件的點(diǎn)M,點(diǎn)M的橫坐標(biāo)為:或或.
(3)∵C(1,3),D(3,1)
∴易得直線OC的解析式為y=3x,直線OD的解析式為y=x.
如解答圖所示,
設(shè)平移中的三角形為△A′O′C′,點(diǎn)C′在線段CD上.
設(shè)O′C′與x軸交于點(diǎn)E,與直線OD交于點(diǎn)P;
設(shè)A′C′與x軸交于點(diǎn)F,與直線OD交于點(diǎn)Q.
設(shè)水平方向的平移距離為t(0≤t<2),
則圖中AF=t,F(xiàn)(1+t),Q(1+t,+t),C′(1+t,3﹣t).
設(shè)直線O′C′的解析式為y=3x+b,
將C′(1+t,3﹣t)代入得:b=﹣4t,
∴直線O′C′的解析式為y=3x﹣4t.
∴E(t,0).
聯(lián)立y=3x﹣4t與y=x,解得x=t,∴P(t,t).
過(guò)點(diǎn)P作PG⊥x軸于點(diǎn)G,則PG=t.
∴S=S△OFQ﹣S△OEP=OF•FQ﹣OE•PG
=(1+t)(+t)﹣•t•t
=﹣(t﹣1)2+
當(dāng)t=1時(shí),S有最大值為.
∴S的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
體育課上,兩名同學(xué)分別進(jìn)行了5次立定跳遠(yuǎn)測(cè)試,要判斷這5次測(cè)試中誰(shuí)的成績(jī)比較穩(wěn)定,通常需要比較這兩名同學(xué)成績(jī)的( 。
A. 平均數(shù) B. 中位數(shù) C. 眾數(shù) D. 方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下表中,y是x的一次函數(shù).
x | ﹣2 | 1 | 2 | 4 | 5 |
y | 6 | ﹣3 | ﹣6 | ﹣12 | ﹣15 |
(1)求該函數(shù)的表達(dá)式,并補(bǔ)全表格;
(2)已知該函數(shù)圖象上一點(diǎn)M(1,﹣3)也在反比例函數(shù)y=圖象上,求這兩個(gè)函數(shù)圖象的另一交點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知二次函數(shù)y=ax2+bx+c的圖象如圖所示.下列結(jié)論:
①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2
其中正確的個(gè)數(shù)有( 。
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在某市開(kāi)展的“讀中華經(jīng)典,做書(shū)香少年”讀書(shū)月活動(dòng)中,圍繞學(xué)生日人均閱讀時(shí)間這一問(wèn)題,對(duì)初二學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)本次抽樣調(diào)查的樣本容量是多少?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在扇形統(tǒng)計(jì)圖中,計(jì)算出日人均閱讀時(shí)間在1~1.5小時(shí)對(duì)應(yīng)的圓心角度數(shù).
(4)根據(jù)本次抽樣調(diào)查,試估計(jì)該市12000名初二學(xué)生中日人均閱讀時(shí)間在0.5~1.5小時(shí)的多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
因式分解a2b﹣b的正確結(jié)果是( 。
| A. | b(a+1)(a﹣1) | B. | a(b+1)(b﹣1) | C. | b(a2﹣1) | D. | b(a﹣1)2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,是八年級(jí)(3)班學(xué)生參加課外活動(dòng)人數(shù)的扇形統(tǒng)計(jì)圖,如果參加藝術(shù)類的人數(shù)是16人,那么參加其它活動(dòng)的人數(shù)是 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在反比例函數(shù)的圖象的每一條曲線上,y都隨x的增大而減小,則k的取值范圍是( 。
A. k>1 B. k>0 C. k≥1 D. k<1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
將邊長(zhǎng)為1的正方形紙片按圖1所示方法進(jìn)行對(duì)折,記第1次對(duì)折后得到的圖形面積為S1,第2次對(duì)折后得到的圖形面積為S2,…,第n次對(duì)折后得到的圖形面積為Sn,請(qǐng)根據(jù)圖2化簡(jiǎn),S1+S2+S3+…+S2014=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com