【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
【答案】
(1)證明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點(diǎn),AD是BC邊上的中線,
∴AE=DE,BD=CD,
在△AFE和△DBE中
∴△AFE≌△DBE(AAS),
∴AF=BD,
∴AF=DC
(2)四邊形ADCF是菱形,
證明:AF∥BC,AF=DC,
∴四邊形ADCF是平行四邊形,
∵AC⊥AB,AD是斜邊BC的中線,
∴AD= BC=DC,
∴平行四邊形ADCF是菱形
【解析】(1)根據(jù)AAS證△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四邊形ADCF是平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì)得出CD=AD,根據(jù)菱形的判定推出即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)買(mǎi)60件A商品和30件B商品共用了1080元,購(gòu)買(mǎi)50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價(jià)分別是多少元?
(2)已知該商店購(gòu)買(mǎi)B商品的件數(shù)比購(gòu)買(mǎi)A商品的件數(shù)的2倍少4件,如果需要購(gòu)買(mǎi)A、B兩種商品的總件數(shù)不少于32件,且該商店購(gòu)買(mǎi)的A、B兩種商品的總費(fèi)用不超過(guò)296元,那么該商店有哪幾種購(gòu)買(mǎi)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(4,0),B(0,4),C(6,6).
(1)求拋物線的表達(dá)式;
(2)證明:四邊形AOBC的兩條對(duì)角線互相垂直;
(3)在四邊形AOBC的內(nèi)部能否截出面積最大的DEFG?(頂點(diǎn)D,E,F(xiàn),G分別在線段AO,OB,BC,CA上,且不與四邊形AOBC的頂點(diǎn)重合)若能,求出DEFG的最大面積,并求出此時(shí)點(diǎn)D的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1對(duì)應(yīng)的函數(shù)表達(dá)式為y=2x-2,直線l1與x軸交于點(diǎn)D.直線l2:y=kx+b與x軸交于點(diǎn)A,且經(jīng)過(guò)點(diǎn)B,直線l1,l2交于點(diǎn)C(m,2).
(1)求點(diǎn)D,點(diǎn)C的坐標(biāo);
(2)求直線l2對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)求△ADC的面積;
(4)利用函數(shù)圖象寫(xiě)出關(guān)于x,y的二元一次方程組的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某臺(tái)階的一部分,如果A點(diǎn)的坐標(biāo)為(0,0),B點(diǎn)的坐標(biāo)為(1,1),
(1)請(qǐng)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫(xiě)出其余各點(diǎn)的坐標(biāo);
(2)如果臺(tái)階有10級(jí),請(qǐng)你求出該臺(tái)階的長(zhǎng)度和高度;
(3)若這10級(jí)臺(tái)階的寬度都是2m,單位長(zhǎng)度為1m,現(xiàn)要將這些臺(tái)階鋪上地毯,需要多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)為6,是數(shù)軸上點(diǎn)左邊的一點(diǎn),=10,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿著數(shù)軸正方向向右勻速運(yùn)動(dòng),若是的中點(diǎn),是的中點(diǎn),點(diǎn)在運(yùn)動(dòng)過(guò)程中,線段的長(zhǎng)度是否發(fā)生變化?若有變化,說(shuō)明理由;若沒(méi)有變化,請(qǐng)求出的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,各地采用價(jià)格調(diào)控手段達(dá)到節(jié)約用水的目的,某市規(guī)定如下用水收費(fèi)標(biāo)準(zhǔn):每戶(hù)每月的用水量不超過(guò)6立方米時(shí),水費(fèi)按每立方米a元收費(fèi),超過(guò)6立方米時(shí),不超過(guò)的部分每立方米仍按a元收費(fèi),超過(guò)的部分每立方米按c元收費(fèi),該市某戶(hù)今年9、10月份的用水量和所交水費(fèi)如下表所示:
設(shè)某戶(hù)每月用水量x(立方米),應(yīng)交水費(fèi)y(元)
(1)a= ,c=
(2)當(dāng)x≤6,x≥6時(shí),分別求出y于x的函數(shù)關(guān)系式
(3)若該戶(hù)11月份用水量為8立方米,求該戶(hù)11 月份水費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市推出了電腦上網(wǎng)包月月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式如圖所示,其中OA是線段,AC是射線.
(1)當(dāng)x≥30時(shí),求y與x之間的函數(shù)關(guān)系式;
(2)若小李4月份上網(wǎng)時(shí)間為20小時(shí),他應(yīng)付多少元上網(wǎng)費(fèi)用;
(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在5月份的上網(wǎng)時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖①,D是等邊△ABC的邊BA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊△DCF,連接AF,你能發(fā)現(xiàn)AF與BD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論;
(2)類(lèi)比猜想:如圖②,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊△ABC邊BA的延長(zhǎng)線時(shí),其他作法與(1)相同,猜想AF與BD在(1)中的結(jié)論是否仍然成立?
(3)深入探究:Ⅰ.如圖③,當(dāng)動(dòng)點(diǎn)D在等邊△ABC邊BA上運(yùn)動(dòng)時(shí)(點(diǎn)D與B不重合),連接DC,以DC為邊在BC上方和下方分別作等邊△DCF和等邊△DCF′,連接AF,BF′,探究AF,BF′與AB有何數(shù)量關(guān)系?并證明你的探究的結(jié)論;Ⅱ.如圖④,當(dāng)動(dòng)點(diǎn)D在等邊△ABC的邊BA的延長(zhǎng)線上運(yùn)動(dòng)時(shí),其他作法與圖③相同,Ⅰ中的結(jié)論是否成立?若不成立,是否有新的結(jié)論?并證明你得出的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com