【題目】如圖,四邊形ABCD,∠A=110°,若點(diǎn)D在AB、AC的垂直平分線上,則∠BDC為( )

A.90°
B.110°
C.120°
D.140°

【答案】D
【解析】解:

連接AD,

∵點(diǎn)D在AB、AC的垂直平分線上,

∴BD=AD,DC=AD,

∴∠B=∠BAD,∠C=∠CAD,

∵∠BAC=110°=∠BAD+∠CAD,

∴∠B+∠C=110°,

∴∠BDC=360°﹣(∠B+∠C)﹣∠BAC=360°﹣110°﹣110°=140°,

所以答案是:D.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解線段垂直平分線的性質(zhì)的相關(guān)知識(shí),掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,,,上一點(diǎn),分別以,為折痕將兩個(gè)角(,)向內(nèi)折起,點(diǎn),恰好都落在邊的點(diǎn)處.若,,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題計(jì)算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ 2;
(1)計(jì)算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ 2
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,EAD的中點(diǎn),過點(diǎn)ABC的平行線與BE的延長線相交于點(diǎn)F,連接CF

1)求證:四邊形CFAD為平行四邊形.

2)若∠BAC90°,AB4,BD,請(qǐng)求出四邊形CFAD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:三角形的三條角平分線交于一點(diǎn),這個(gè)點(diǎn)稱為三角形的內(nèi)心(三角形內(nèi)切圓的圓心).現(xiàn)在規(guī)定:如果四邊形的四個(gè)角的角平分線交于一點(diǎn),我們把這個(gè)點(diǎn)也成為“四邊形的內(nèi)心”.
(1)試舉出一個(gè)有內(nèi)心的四邊形.
(2)如圖1,已知點(diǎn)O是四邊形ABCD的內(nèi)心,求證:AB+CD=AD+BC.

(3)如圖2,Rt△ABC中,∠C=90°.O是△ABC的內(nèi)心.若直線DE截邊AC,BC于點(diǎn)D,E,且O仍然是四邊形ABED的內(nèi)心.這樣的直線DE可畫多少條?請(qǐng)?jiān)趫D2中畫出一條符合條件的直線DE,并簡單說明作法.

(4)問題(3)中,若AC=3,BC=4,滿足條件的一條直線DE∥AB,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)是直線上第一象限的點(diǎn),點(diǎn)的坐標(biāo)是,是坐標(biāo)原點(diǎn),的面積為,則關(guān)于的函數(shù)關(guān)系式(取值范圍)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,各地“廣場(chǎng)舞”噪音干擾的問題備受關(guān)注,相關(guān)人員對(duì)本地區(qū)15﹣65歲年齡段的500名市民進(jìn)行了隨機(jī)調(diào)查,在調(diào)查過程中對(duì)“廣場(chǎng)舞”噪音干擾的態(tài)度有以下五種:A:沒影響;B:影響不大;C:有影響,建議做無聲運(yùn)動(dòng),D:影響很大,建議取締;E:不關(guān)心這個(gè)問題,將調(diào)查結(jié)果繪統(tǒng)計(jì)整理并繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息解答下列問題:
(1)填空m= , 態(tài)度為C所對(duì)應(yīng)的圓心角的度數(shù)為;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若全區(qū)15﹣65歲年齡段有20萬人,估計(jì)該地區(qū)對(duì)“廣場(chǎng)舞”噪音干擾的態(tài)度為B的市民人數(shù);
(4)若在這次調(diào)查的市民中,從態(tài)度為A的市民中抽取一人的年齡恰好在年齡段15﹣35歲的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形內(nèi)放置正方形甲、正方形乙、等腰直角三角形丙,它們的擺放位置如圖所示,已知,圖中陰影部分的面積之和為31,則矩形的周長為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市在黨中央實(shí)施“精準(zhǔn)扶貧”政策的號(hào)召下,大力開展科技扶貧的惠農(nóng)富農(nóng),老張?jiān)诳萍既藛T的指導(dǎo)下,改良柑橘品種,去年他家的柑橘喜獲豐收,而且質(zhì)優(yōu)味美,客商聞?dòng)嵡皝聿少彛?jīng)協(xié)商:采購價(jià)y(元/噸)與采購量x(噸)之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)關(guān)系式;
(2)老張種植柑橘的成本是800元/噸,當(dāng)客商采購量是多少時(shí),老張?jiān)谶@次銷售柑橘時(shí)獲利最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案