【題目】某校初一年級隨機抽取30名學(xué)生,對5種活動形式:A、跑步,B、籃球,C、跳繩,D、乒乓球,E、武術(shù),進行了隨機抽樣調(diào)查,每個學(xué)生只能選擇一種運動行駛,調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.

(1)將條形圖補充完整;

(2)如果初一年級有900名學(xué)生,估計喜愛跳繩運動的有多少人?

(3)某次體育課上,老師在5個一樣的乒乓球上分別寫上A、B、C、D、E,放在不透明的口袋中,每人每次摸出一個球并且只摸一次,然后放回,按照球上的標號參加對應(yīng)活動,小明和小剛是好朋友,請用樹狀圖或列表法的方法,求他倆恰好是同一種活動形式的概率.

【答案】(1)補圖見解析;(2)270人;(3)

【解析】

(1)根據(jù)各類型人數(shù)之和為30,用總?cè)藬?shù)減去AB、C、E四組人數(shù)之和可得;
(2)用總?cè)藬?shù)乘以樣本中D類型人數(shù)所占比例可得;
(3)畫出樹狀圖列出所有等可能結(jié)果,再根據(jù)概率公式求解可得.

解:(1)D類型的人數(shù)為 (),

補全條形圖如下:

(2)(人),

答:估計喜愛跳繩運動的有270人;

(2)畫樹狀圖如下:

由樹狀圖可知,共有25種等可能結(jié)果,其中他倆恰好是同一種活動形式的有5種.

∴他倆恰好是同一種活動形式的概率為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個工廠了解情況,獲得如下信息:

信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】江津四面山是國家5A級風景區(qū),里面有一個景點被譽為亞洲第一巖﹣﹣土地神巖,土地神巖壁畫高度從石巖F處開始一直豎直到山頂E處,為了測量土地神巖上壁畫的高度,小明從山腳A處,沿坡度i=0.75的斜坡上行65米到達C處,在C處測得山頂E處仰角為26.5°,再往正前方水平走15米到達D處,在D處測得壁畫底端F處的俯角為42°,壁畫底端F處距離山腳B處的距離是12米,A、B、C、D、E、F在同一平面內(nèi),A、B在同一水平線上,EBAB,根據(jù)小明的測量數(shù)據(jù),則壁畫的高度EF為( 。┟祝ň_到0.1米,參考數(shù)據(jù):sin26.5°≈0.45,cos26.5°≈0.9,tan26.5°≈0.5,sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)

A. 49.5 B. 68.7 C. 69.7 D. 70.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C為⊙O上一點,將弧BC沿直線BC翻折,使弧BC的中點D恰好與圓心O重合,連接OC,CD,BD,過點C的切線與線段BA的延長線交于點P,連接AD,在PB的另一側(cè)作∠MPB=ADC.

(1)判斷PM與⊙O的位置關(guān)系,并說明理由;

(2)若PC=,求四邊形OCDB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,弦CD平分∠ACB,點E為弧AD上一點,連接CE、DE,CDAB交于點N.

(1)如圖1,求證:∠AND=CED;

(2)如圖2,AB為⊙O直徑,連接BE、BD,BECD交于點F,若2BDC=90°﹣DBE,求證:CD=CE;

(3)如圖3,在(2)的條件下,連接OF,若BE=BD+4,BC=,求線段OF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的正方形中,點A,BC在小正方形的頂點上.

1)在圖中畫出與ABC關(guān)于直線l成軸對稱的ABC

2)三角形ABC的面積為   ;

3)在直線l上找一點P,使PA+PB的長最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形ABCO的面積為15,邊OAOC2EBC的中點,以OE為直徑的⊙O′軸于D點,過點DDF⊥AE于點F。

1)求OAOC的長;

2)求證:DF⊙O′的切線;

3)小明在解答本題時,發(fā)現(xiàn)△AOE是等腰三角形。由此,他斷定:直線BC上一定存在除點E以外的點P,使△AOP也是等腰三角形,且點P一定在⊙O′。你同意他的看法嗎?請充分說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過點P(2,﹣3).

(1)求該函數(shù)的解析式;

(2)若將點P沿x軸負方向平移3個單位,再沿y軸方向平移n(n0)個單位得到點P′,使點P′恰好在該函數(shù)的圖象上,求n的值和點P沿y軸平移的方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘.在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t

(分)之間的關(guān)系如圖所示,下列結(jié)論:

甲步行的速度為60/分;

乙走完全程用了30分鐘;

乙用16分鐘追上甲;

乙到達終點時,甲離終點還有320

其中正確的結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案