【題目】如圖,在△ABC中,AB=AC=4,∠BAC=120°,M是BC的中點(diǎn),點(diǎn)E是AB邊上的動(dòng)點(diǎn),點(diǎn)F是線段BM上的動(dòng)點(diǎn),則ME+EF的最小值等于___.
【答案】3
【解析】
連接AM,作點(diǎn)M關(guān)于AB的對稱點(diǎn)D,連接BD,DE,依據(jù)勾股定理,即可得到BD=BM=2,再根據(jù)當(dāng)點(diǎn)D,E,F三點(diǎn)共線,且DF⊥BC時(shí),EF+EM的最小值等于DF的長,利用勾股定理求得DF的長,即可得到ME+EF的最小值.
如圖,連接AM,
∵AB=AC=4,∠BAC=120°,M是BC的中點(diǎn),
∴AM⊥BC,AM=AB=2,
∴Rt△ABM中,BM==2,
作點(diǎn)M關(guān)于AB的對稱點(diǎn)D,連接BD,DE,則BD=BM=2,DE=ME,
當(dāng)點(diǎn)D,E,F三點(diǎn)共線,且DF⊥BC時(shí),EF+EM的最小值等于DF的長,
此時(shí),Rt△BDF中,∠DBF=60°,∠D=30°,
∴BF=,
∴DF==3,
∴ME+EF的最小值等于3,
故答案為:3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( ).
A.在一個(gè)角的內(nèi)部(包括頂點(diǎn))到角的兩邊距離相等的點(diǎn)的軌跡是這個(gè)角的平分線
B.到點(diǎn)距離等于的點(diǎn)的軌跡是以點(diǎn)為圓心,半徑長為的圓
C.到直線距離等于的點(diǎn)的軌跡是兩條平行于且與的距離等于的直線
D.等腰三角形的底邊固定,頂點(diǎn)的軌跡是線段的垂直平分線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內(nèi)心,以O(shè)為圓心,r為半徑的圓與線段AB有交點(diǎn),則r的取值范圍是( )
A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的三倍,則稱這樣的方程為“3倍根方程”,以下說法不正確的是( )
A. 方程x2﹣4x+3=0是3倍根方程
B. 若關(guān)于x的方程(x﹣3)(mx+n)=0是3倍根方程,則m+n=0
C. 若m+n=0且m≠0,則關(guān)于x的方程(x﹣3)(mx+n)=0是3倍根方程
D. 若3m+n=0且m≠0,則關(guān)于x的方程x2+(m﹣n)x﹣mn=0是3倍根方程
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣古田鎮(zhèn)某紀(jì)念品商店在銷售中發(fā)現(xiàn):“成功從這里開始”的紀(jì)念品平均每天可售出20件,每件盈利40元.為了擴(kuò)大銷售量,增加盈利,盡快減少庫存,該商店在今年國慶黃金周期間,采取了適當(dāng)?shù)慕祪r(jià)措施,改變營銷策略后發(fā)現(xiàn):如果每件降價(jià)4元,那么平均每天就可多售出8件.商店要想平均每天在銷售這種紀(jì)念品上盈利1200元,那么每件紀(jì)念品應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,點(diǎn)E在邊AB上,連結(jié)DE,CE.
(1)若∠A=∠B=∠DEC=50°,找出圖中的相似三角形,并說明理由;
(2)若四邊形ABCD為矩形,AB=5,BC=2,且圖中的三個(gè)三角形都相似,求AE的長.
(3)若∠A=∠B=90°,AD<BC,圖中的三個(gè)三角形都相似,請判斷AE和BE的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程kx2+2x﹣1=0有實(shí)數(shù)根,
(1)求k的取值范圍;
(2)當(dāng)k=2時(shí),請用配方法解此方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C的坐標(biāo)分別為(0,8)、(6,0),以AC為直徑作⊙O,交坐標(biāo)軸于點(diǎn)B,點(diǎn)D是⊙O 上一點(diǎn),且,過點(diǎn)D作DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)判斷直線ED與⊙O的位置關(guān)系,并說明理由;
(3)求線段CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com