【題目】科技館是少年兒童節(jié)假日游玩的樂(lè)園.
如圖所示,圖中點(diǎn)的橫坐標(biāo)x表示科技館從8:30開門后經(jīng)過(guò)的時(shí)間(分鐘),縱坐標(biāo)y表示到達(dá)科技館的總?cè)藬?shù).圖中曲線對(duì)應(yīng)的函數(shù)解析式為y= ,10:00之后來(lái)的游客較少可忽略不計(jì).
(1)請(qǐng)寫出圖中曲線對(duì)應(yīng)的函數(shù)解析式;
(2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過(guò)684人,后來(lái)的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時(shí),館外等待的游客可全部進(jìn)入.請(qǐng)問(wèn)館外游客最多等待多少分鐘?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c與直線y=﹣x+6分別交于x軸和y軸上同一點(diǎn),交點(diǎn)分別是點(diǎn)B和點(diǎn)C,且拋物線的對(duì)稱軸為直線x=4.
(1)求出拋物線與x軸的兩個(gè)交點(diǎn)A,B的坐標(biāo).
(2)試確定拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在第一個(gè) 中,,,在邊上任取一,延長(zhǎng)到,使,得到第個(gè),在邊上任取一點(diǎn),延長(zhǎng) 到,使,得到第三個(gè),…按此做法繼續(xù)下去,第 個(gè)等腰三角形的底角的度數(shù)是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請(qǐng)寫出△ABC各點(diǎn)的坐標(biāo).
(2)求出△ABC的面積.
(3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得到△A′B′C′,請(qǐng)?jiān)趫D中畫出△A′B′C′,并寫出點(diǎn)A′、B′、C′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB⊥BD,CD⊥BD,∠A與∠AEF互補(bǔ),以下是證明CD∥EF的推理過(guò)程及理由,請(qǐng)你在橫線上補(bǔ)充適當(dāng)條件,完整其推理過(guò)程或理由.
證明:∵AB⊥BD,CD⊥BD(已知)
∴∠ABD=∠CDB= ( )
∴∠ABD+∠CDB=180°
∴AB∥ ( 。
又∠A與∠AEF互補(bǔ) ( 。
∠A+∠AEF=
∴AB∥ ( )
∴CD∥EF ( 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A,B,C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,
①設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時(shí),點(diǎn)P的坐標(biāo);
②是否存在一點(diǎn)P,使△PCD的面積最大?若存在,求出△PCD的面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別是,現(xiàn)同時(shí)將點(diǎn)分別向上平移2個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到的對(duì)應(yīng)點(diǎn).連接.
(1)寫出點(diǎn)的坐標(biāo)并求出四邊形的面積.
(2)在軸上是否存在一點(diǎn),使得的面積是面積的2倍?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)若點(diǎn)是直線上一個(gè)動(dòng)點(diǎn),連接,當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),請(qǐng)直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BE平分∠ABC,CE平分∠ACD,且交BE于點(diǎn)E,∠BAC=30°,則∠CAE=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CE是∠ACD的角平分線,F為CA延長(zhǎng)線上一點(diǎn),G為線段AB上一點(diǎn),連接FG.
(1)若∠ACD=110°,∠AFG=55°,試說(shuō)明:FG∥CE
(2)若∠AGF=20°,∠BAC=45°,且FG∥CE,求∠ACE的度數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com