【題目】如圖,正方形ABCD中,F為AB上一點(diǎn),E是BC延長(zhǎng)線上一點(diǎn),且AF=EC,連接EF,DE,DF,M是FE中點(diǎn),連結(jié)MC,設(shè)FE與DC相交于點(diǎn)N.則4個(gè)結(jié)論:①DN=DG;②△BFG∽△EDG∽△BDE;③CM垂直BD;④若MC=,則BF=2;正確的結(jié)論有( )個(gè)
A.4B.3C.2D.1
【答案】B
【解析】
根據(jù)正方形的性質(zhì)可得AD=CD,然后利用“邊角邊”證明△ADF和△CDE全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ADF=∠CDE,然后求出∠EDF=∠ADC=90°,而∠DGN=45°+∠FDG,∠DNG=45°+∠CDE,∠FDG不一定等于∠CDE,于是∠DGN不一定等于∠DNG,判斷出①錯(cuò)誤;
根據(jù)全等三角形對(duì)應(yīng)邊相等可得DE=DF,然后判斷出△DEF是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠DEF=45°,再根據(jù)兩組角對(duì)應(yīng)相等的三角形相似得到△BFG∽△EDG∽△BDE,判斷出②正確;
連接BM、DM,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得然后判斷出直線CM垂直平分BD,判斷出③正確;
過(guò)點(diǎn)M作MH⊥BC于H,得到∠MCH=45°,然后求出MH,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得BF=2MH,判斷出④正確.
在正方形ABCD中,AD=CD,
在△ADF和△CDE中,
,
∴△ADF≌△CDE(SAS),
∴∠ADF=∠CDE,DE=DF,
∴∠EDF=∠FDC+∠CDE=∠FDC+∠ADF=∠ADC=90°,
∴∠DEF=45°,
∵∠DGN=45°+∠FDG,∠DNG=45°+∠CDE,∠FDG≠∠CDE,
而∠FDG與∠CDE不一定相等,
∴∠DGN與∠DNG不一定相等,故判斷出①錯(cuò)誤;
∵△DEF是等腰直角三角形,
∵∠ABD=∠DEF=45°,∠BGF=∠EGD(對(duì)頂角相等),
∴△BFG∽△EDG,
∵∠DBE=∠DEF=45°,∠BDE=∠EDG,
∴△EDG∽△BDE,
∴△BFG∽△EDG∽△BDE,故②正確;
如圖,連接BM、DM
.
∵△AFD≌△CED,
∴∠FDA=∠EDC,DF=DE,
∴∠FDE=∠ADC=90°,
∵M是EF的中點(diǎn),
∴
∵
∴MD=MB,
在△DCM與△BCM中,
,
∴△DCM≌△BCM(SSS),
∴∠BCM=∠DCM,
∴CM在正方形ABCD的角平分線AC上,
∴MC垂直平分BD;故③正確;
過(guò)點(diǎn)M作MH⊥BC于H,則∠MCH=45°,
∵,
∴,
∵M是EF的中點(diǎn),BF⊥BC,MH⊥BC,
∴MH是△BEF的中位線,
∴BF=2MH=2,故④正確;
綜上所述,正確的結(jié)論有②③④.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=2x+b的圖象與x軸的交點(diǎn)為A(2,0),與y軸的交點(diǎn)為B,直線AB與反比例函數(shù)y=的圖象交于點(diǎn)C(﹣1,m).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)直接寫(xiě)出關(guān)于x的不等式2x+b>的解集;
(3)點(diǎn)P是這個(gè)反比例函數(shù)圖象上的點(diǎn),過(guò)點(diǎn)P作PM⊥x軸,垂足為點(diǎn)M,連接OP,BM,當(dāng)S△ABM=2S△OMP時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)網(wǎng)約車十分流行,初三某班學(xué)生對(duì)“美團(tuán)”和“滴滴”兩家網(wǎng)約車公司各10名司機(jī)月收入進(jìn)行了一項(xiàng)抽樣調(diào)查,司機(jī)月收入(單位:千元)如圖所示:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均月收/千元 | 中位數(shù)/千元 | 眾數(shù)/千元 | 方差/千元 | |
“美團(tuán)” | ① | 6 | 6 | 1.2 |
“滴滴” | 6 | ② | 4 | ③ |
(1)完成表格填空:①__________②__________③__________
(2)若從兩家公司中選擇一家做網(wǎng)約車司機(jī),你會(huì)選哪家公司,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識(shí)測(cè)量某廣告牌的寬度圖中線段MN的長(zhǎng),直線MN垂直于地面,垂足為點(diǎn)在地面A處測(cè)得點(diǎn)M的仰角為、點(diǎn)N的仰角為,在B處測(cè)得點(diǎn)M的仰角為,米,且A、B、P三點(diǎn)在一直線上請(qǐng)根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長(zhǎng).
參考數(shù)據(jù):,,,,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是邊長(zhǎng)為的等邊三角形,邊在射線上,且,點(diǎn)從點(diǎn)出發(fā),沿OM的方向以1cm/s的速度運(yùn)動(dòng),當(dāng)D不與點(diǎn)A重合時(shí),將繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)60°得到,連接DE.
(1)如圖1,求證:是等邊三角形;
(2)如圖2,當(dāng)6<t<10時(shí),DE是否存在最小值?若存在,求出DE的最小值;若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)D在射線OM上運(yùn)動(dòng)時(shí),是否存在以D,E,B為頂點(diǎn)的三角形是直角三角形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識(shí)的增強(qiáng),越來(lái)越多的人喜歡騎自行車出行,也給自行車商家?guī)?lái)商機(jī).某自行車行經(jīng)營(yíng)的A型自行車去年銷售總額為8萬(wàn)元.今年該型自行車每輛售價(jià)預(yù)計(jì)比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價(jià)多少元?
(2)該車行今年計(jì)劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過(guò)A型車數(shù)量的兩倍.已知,A型車和B型車的進(jìn)貨價(jià)格分別為1500元和1800元,計(jì)劃B型車銷售價(jià)格為2400元,應(yīng)如何組織進(jìn)貨才能使這批自行車銷售獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有理數(shù)-3,1.
(1)在下列數(shù)軸上,標(biāo)出表示這兩個(gè)數(shù)的點(diǎn),并分別用A,B表示;
(2)若|m|=2,在數(shù)軸上表示數(shù)m的點(diǎn),介于點(diǎn)A,B之間,在A的右側(cè)且到點(diǎn)B距離為5的點(diǎn)表示為n.
①計(jì)算m+n-mn;
②解關(guān)于x的不等式mx+4<n,并把解集表示在下列數(shù)軸上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,點(diǎn)F在AB的延長(zhǎng)線上,且BF=AB,連接FD,交BC于點(diǎn)E.
(1)說(shuō)明△DCE≌△FBE的理由;
(2)若EC=3,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象與直線y=mx交于點(diǎn)C,直線l:y=4分別交兩函數(shù)圖象于點(diǎn)A(1,4)和點(diǎn)B,過(guò)點(diǎn)B作BD⊥l交反比例函數(shù)圖象于點(diǎn) D.
(1)求反比例函數(shù)的解析式;
(2)當(dāng)BD=2AB時(shí),求點(diǎn)B的坐標(biāo);
(3)在(2)的條件下,直接寫(xiě)出不等式>mx的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com