【題目】已知∠AOB是一個直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD,OE.
(1)如圖①,當∠BOC=40°時,求∠DOE的度數(shù);
(2)如圖②,當射線OC在∠AOB內(nèi)繞O點旋轉(zhuǎn)時,∠DOE的大小是否發(fā)生變化,說明理由;
(3)當射線OC在∠AOB外繞O點旋轉(zhuǎn)且∠AOC為鈍角時,畫出圖形,直接寫出∠DOE的度數(shù)(不必寫過程).
【答案】(1)45°;(2)∠DOE的大小不變,理由見解析;(3)45°或135°;畫圖見解析.
【解析】
(1)如圖①,當∠BOC=40°時,求∠DOE的度數(shù);
(2)如圖②,當射線OC在∠AOB內(nèi)繞O點旋轉(zhuǎn)時,∠DOE的大小是否發(fā)生變化,說明理由;
(3)當射線OC在∠AOB外繞O點旋轉(zhuǎn)且∠AOC為鈍角時,畫出圖形,直接寫出相應(yīng)的∠DOE的度數(shù)(不必寫出過程).
解:(1)如圖,∠AOC=90°﹣∠BOC=50°,
∵OD、OE分別平分∠AOC和∠BOC,
∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,
∴∠DOE=∠COD+∠COE=45°;
(2)∠DOE的大小不變,理由是:
∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;
(3)∠DOE的大小發(fā)生變化情況為,
如圖3,則∠DOE為45°;如圖4,則∠DOE為135°,
分兩種情況:如圖3所示,
∵OD、OE分別平分∠AOC和∠BOC,
∴∠COD=∠AOC,∠COE=∠BOC,
∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;
如圖4所示,∵OD、OE分別平分∠AOC和∠BOC,
∴∠COD=∠AOC,∠COE=∠BOC,
∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.
科目:初中數(shù)學 來源: 題型:
【題目】自我國實施“限塑令”起,開始有償使用環(huán)保購物袋,為了滿足市場需求,某廠家生產(chǎn)A、B兩種款式的布質(zhì)環(huán)保購物袋,每天生產(chǎn)4500個,兩種購物袋的成本和售價如下表,若設(shè)每天生產(chǎn)A種購物袋 x個.
(1)用含x的整式表示每天的生產(chǎn)成本,并進行化簡;
(2)用含x的整式表示每天獲得的利潤,并進行化簡(利潤=售價-成本);
(3)當x=1500時,求每天的生產(chǎn)成本與每天獲得的利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AC=BC,射線AP交邊BC于點E,點D是射線AP上一點,連接BD、CD .
(1)如圖1,當∠CAB=45°,∠BDP=90°時,請直接寫出DA與DB、DC之間滿足的數(shù)量關(guān)系為: .
(2)如圖2,當∠CAB=30°,∠BDP=60°時,試猜想:DA與DB、DC之間具有怎樣的數(shù)量關(guān)系?并說明理由.
(3)如圖3,當∠ACB=,∠BDP=,若與之間滿足,則DA與DB、DC之間的數(shù)量關(guān)系為 .(請直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,,均是等邊三角形,由這3個等邊三角形組成一個新圖形,現(xiàn)有下列結(jié)論:①;②是一個平角;③;④新圖形是一個軸對稱圖形,并且只有一條對稱軸.其中正確的結(jié)論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的三個頂點坐標為A(-4,4),B(-3,1),C(-1,2)。
(1)將△ABC向右平移5個單位,得到△A1B1C1,畫出圖形,并直接寫出A1的坐標;
(2)作出△A1B1C1關(guān)于x軸對稱的圖形△A2B2C2,并直接寫出C2點的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=12,點E在邊CD上,且BG=CG,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②∠EAG=450;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正確結(jié)論的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠XOY=60°,點A在邊OX上,OA=2.過點A作AC⊥OY于點C,以AC為一邊在∠XOY內(nèi)作等邊三角形ABC,點P是△ABC圍成的區(qū)域(包括各邊)內(nèi)的一點,過點P作PD∥OY交OX于點D,作PE∥OX交OY于點E.設(shè)OD=a,OE=b,則a+2b的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點P從點A出發(fā),以lcm/s的速度沿A→D→C方向勻速運動,同時點Q從點A出發(fā),以2cm/s的速度沿A→B→C方向勻速運動,當一個點到達點C時,另一個點也隨之停止.設(shè)運動時間為t(s),△APQ的面積為S(cm2),下列能大致反映S與t之間函數(shù)關(guān)系的圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司分兩次采購甲、乙兩種商品,具體情況如下:
商品 | 甲 | 乙 | 花費資金 |
次數(shù) | |||
第一次采購件數(shù) | 10件 | 15件 | 350元 |
第二次采購件數(shù) | 15件 | 10件 | 375元 |
(1)求甲、乙商品每件各多少元?
(2)公司計劃第三次采購甲、乙兩種商品共31件,要求花費資金不超過475元,問最多可購買甲商品多少件?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com