【題目】利用圖象解一元二次方程x2-2x-1=0時,我們采用的一種方法是在直角坐標(biāo)系中畫出拋物線y=x2和直線y=2x+1,兩圖象交點(diǎn)的橫坐標(biāo)就是該方程的解.

(1)請?jiān)俳o出一種利用圖象求方程x2-2x-1=0的解的方法;

(2)已知函數(shù)y=x3的圖象(如圖),求方程x3-x-2=0的解(結(jié)果保留兩位有效數(shù)字).

【答案】(1)見解析(2)x≈1.5

【解析】

(1)由范例可得應(yīng)把x2-2x-1=0進(jìn)行整理,也可得到x2-1=2x,那么可得y=x2-1y=2x兩圖象交點(diǎn)的橫坐標(biāo)就是該方程的解.

(2)把方程x3-x-2=0整理得x3=x+2,那么可得y=x3y=x+2兩圖象交點(diǎn)的橫坐標(biāo)就是該方程的解.

解:(1)答案不唯一,如在直角坐標(biāo)系中畫出拋物線yx2-1和直線y=2x,其交點(diǎn)的橫坐標(biāo)就是方程的解.

(2)在圖中畫出直線yx+2,與函數(shù)yx3的圖象交于點(diǎn)B,得點(diǎn)B的橫坐標(biāo)x≈1.5,

∴方程的解為x≈1.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

如圖1,在平面內(nèi)選一定點(diǎn)O,引一條有方向的射線Ox,再選定一個單位長度,那么平面上任一點(diǎn)M的位置可由MOx的度數(shù)θ與OM的長度m確定,有序數(shù)對(θ,m)稱為M點(diǎn)的“極坐標(biāo)”,這樣建立的坐標(biāo)系稱為“極坐標(biāo)系”.

應(yīng)用:在圖2的極坐標(biāo)系下,如果正六邊形的邊長為2,有一邊OA在射線Ox上,則正六邊形的頂點(diǎn)C的極坐標(biāo)應(yīng)記為(  )

A(60°,4) B(45°,4) C(60°,2 D(50°,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),點(diǎn)B的坐標(biāo)為(1,0)、C(0,﹣3).

(1)求拋物線的解析式.

(2)若點(diǎn)D是線段AC下方拋物線上的動點(diǎn),求四邊形ABCD面積的最大值.

(3)若點(diǎn)Ex軸上,點(diǎn)P在拋物線上,是否存在以A、C、E、P為頂點(diǎn)且以AC為一邊的平行四邊形?如存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+b與y=bx2+ax的圖象可能是(  )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知函數(shù)y=ax2(a≠0)的圖象上的點(diǎn)D,C與x軸上的點(diǎn)A(-5,0)和B(3,0)構(gòu)成ABCD,DC與y軸的交點(diǎn)為E(0,6),試求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖16,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線的解析式.

(2)若點(diǎn)D是線段AC下方拋物線上的動點(diǎn),求四邊形ABCD面積的最大值.

(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機(jī)小李某天上午營運(yùn)時是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:

,,,,,

問:(1)將最后一位乘客送到目的地時,小李在什么位置?

2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?

3)若出租車起步價為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程-(k+2)x+2k=0.

(1)試說明無論k取何值時,這個方程一定有實(shí)數(shù)根;

(2)已知等腰的一邊a=1,若另兩邊b、c恰好是這個方程的兩個根,求的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活水平的不斷提高,旅游已成為人們的一種生活時尚 開發(fā)新的旅游項(xiàng)目我市對某山區(qū)進(jìn)行調(diào)查,發(fā)現(xiàn)一瀑布為測量它的高度 量人員在瀑布的對面山上 D 點(diǎn)處測得瀑布頂端 A 點(diǎn)的仰角是 30°,測得瀑布底端 B 點(diǎn)的俯角是 10°,AB 與水平面垂直.又在瀑布下的水平面測得 CG=27m, GF=17.6m(注:C、G、F 三點(diǎn)在同一直線上,CFAB 于點(diǎn) F).斜坡 CD=20m, 坡角∠ECD=40°.求瀑布 AB 的高度.(參考數(shù)據(jù):≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)

查看答案和解析>>

同步練習(xí)冊答案