【題目】定義:在平面直角坐標(biāo)系xOy中,把從點P出發(fā)沿縱或橫方向到達(dá)點Q(至多拐一次彎)的路徑長稱為P,Q的“實際距離”.如圖,若P(1,1),Q(23),則P,Q的“實際距離”為5,即PS+SQ5PT+TQ5.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設(shè)A,BC三個小區(qū)的坐標(biāo)分別為A(3,1)B(5,﹣3)C(1,﹣5),若點M表示單車停放點,且滿足MA,B,C的“實際距離”相等,則點M的坐標(biāo)為(  )

A. (1,﹣2)B. (2,﹣1)C. (,﹣1)D. (3.0)

【答案】A

【解析】

若設(shè)Mx,y),構(gòu)建方程組即可解決問題.

設(shè)M(xy),由實際距離的定義可知:

M只能在ECFG區(qū)域內(nèi),

1x5,﹣5y1

又∵MA,BC距離相等,

|x3|+|y1||x5|+|y+3||x+1|+|y+5|,①

|x3|+1y5x+|y+3|x+1+y+5,②

要將|x3||y+3|中絕對值去掉,

需要判斷x3的左側(cè)和右側(cè),以及y在﹣3的上側(cè)還是下側(cè),

將矩形ECFG分割為4部分,若要使MAB,C的距離相等,

由圖可知M只能在矩形AENK中,

x3y>﹣3,

則方程可變?yōu)椋?/span>3x+1yy+5+x+15x+3+y,

解得,x1y=﹣2,則M(1,﹣2)

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線)與軸交于、兩點(點在點左側(cè)),與軸交于點,該拋物線的頂點的縱坐標(biāo)是.

1)求點、的坐標(biāo);

2)設(shè)直線與直線關(guān)于該拋物線的對稱軸對稱,求直線的表達(dá)式;

3)平行于軸的直線與拋物線交于點、,與直線交于點.若,結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,AD,將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CHFG于點M,則HM=( 。

A. B. 1 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了科學(xué)建設(shè)學(xué)生健康成長工程.隨機抽取了部分學(xué)生家庭對其家長進(jìn)行了主題為周末孩子在家您關(guān)心嗎?的問卷調(diào)查,將回收的問卷進(jìn)行分析整理,得到了如下的樣本統(tǒng)計表和扇形統(tǒng)計圖:

代號

情況分類

家庭數(shù)

帶孩子玩并且關(guān)心其作業(yè)完成情況

16

只關(guān)心其作業(yè)完成情況

b

只帶孩子玩

8

既不帶孩子玩也不關(guān)心其作業(yè)完成情況

d

(1)求的值;

(2)該校學(xué)生家庭總數(shù)為500,學(xué)校決定按比例在類家庭中抽取家長組成培訓(xùn)班,其比例為類取20%,類各取60%,請你估計該培訓(xùn)班的家庭數(shù);

(3)若在類家庭中只有一個城鎮(zhèn)家庭,其余是農(nóng)村家庭,請用列舉法求出在類中隨機抽出2個家庭進(jìn)行深度采訪,其中有一個是城鎮(zhèn)家庭的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某消防隊在一居民樓前進(jìn)行演習(xí),消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者.在消防車上點A處測得點B和點C的仰角分別是45°65°,點A距地面2.5米,點B距地面10.5.為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在O中,半徑OC垂直于弦AB,垂足為點D,點EOC的延長線上,∠EAC=∠BAC

(1)求證:AEO的切線;

(2)AB8,cosE,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,AB=4,點F,C是⊙O上兩點,連接AC,AF,OC,弦AC平分∠FAB,BOC=60°,過點CCDAFAF的延長線于點D,垂足為點D.

(1)求扇形OBC的面積(結(jié)果保留π);

(2)求證:CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接2011年高中招生考試,某中學(xué)對全校九年級學(xué)生進(jìn)行了一次數(shù)學(xué)摸底考試,并隨機抽取了部分學(xué)生的測試成績作為樣本進(jìn)行,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給信息,下列問題:

1)請將表示成績類別為的條形統(tǒng)計圖補充完整;

2)在扇形統(tǒng)計圖中,表示成績類別為優(yōu)的扇形所對應(yīng)的圓心角是 72 度;

3)學(xué)校九年級共有1000人參加了這次數(shù)學(xué)考試,估算該校九年級共有多少名學(xué)生的數(shù)學(xué)成績可以達(dá)到優(yōu)秀?

查看答案和解析>>

同步練習(xí)冊答案