如圖9,拋物線 與軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))。與軸交于點(diǎn)C.
(1)、求點(diǎn)A、B的坐標(biāo);
(2)、設(shè)D為已知拋物線的對稱軸上的任意一點(diǎn)。當(dāng)△ACD的面積等于△ACB的面積時,求點(diǎn)D的坐標(biāo);
(3)、若直線經(jīng)過點(diǎn)E(4,0),M為直線上的動點(diǎn),當(dāng)以A、B、M為頂點(diǎn)所作的直角三角形有且只有三個時,求直線的解析式。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年北京市通州區(qū)中考二模數(shù)學(xué)試卷 題型:解答題
如圖15,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),連結(jié),若
(1)求拋物線對應(yīng)的二次函數(shù)的解析式;
(2)在拋物線的對稱軸上是否存在點(diǎn),使若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)如圖16所示,連結(jié),是線段上(不與、重合)的一個動點(diǎn).過點(diǎn) 作直線,交拋物線于點(diǎn),連結(jié)、,設(shè)點(diǎn)的橫坐標(biāo)為.當(dāng)t為何值時,的面積最大?最大面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(29):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com