【題目】在實(shí)數(shù)范圍內(nèi)定義一種運(yùn)算“*”,其運(yùn)算法則為a*ba2ab.根據(jù)這個(gè)法則,下列結(jié)論中正確的是_______(把所有正確結(jié)論的序號(hào)都填在橫線上)

*2;a+b0,則a*bb*a③(x+2)*(x+1)0是一元二次方程;方程(x+3)*11的根是x1,x2

【答案】①②④

【解析】

根據(jù)運(yùn)算法則為a*ba2ab,一一判斷即可.

:根據(jù)已知條件:a*ba2ab,

*==2-,①正確;

②若a+b=0,a=-b, a*b=a-ab=b-ba=b*a,②正確;

(x+2)*(x+1)=x+2,③錯(cuò)誤;

(x+3)*1=(x+3) 2-(x+3)= x2 +5x+6,

(x+3) *1=1即為方程x2 +5x+6=1,化簡(jiǎn)得x2 +5x+5=0,

計(jì)算得出x1,x2,④正確.

因此, 本題正確答案是:①②④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過(guò)點(diǎn)B的切線AE與CD的延長(zhǎng)線交于點(diǎn)A,∠AEO=∠C,OE交BC于點(diǎn)F.

(1)求證:OE∥BD;
(2)當(dāng)⊙O的半徑為5,sin∠DBA= 時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點(diǎn)P在AC上,PM交AB于點(diǎn)E,PN交BC于點(diǎn)F,當(dāng)PE=2PF時(shí),AP=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“蘑菇石”是我國(guó)著名的自然保護(hù)區(qū)梵凈山的標(biāo)志,小明從山腳B點(diǎn)先乘坐纜車到達(dá)觀景平臺(tái)DE觀景,然后再沿著坡腳為29°的斜坡由E點(diǎn)步行到達(dá)“蘑菇石”A點(diǎn),“蘑菇石”A點(diǎn)到水平面BC的垂直距離為1890m.如圖,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的長(zhǎng)度.(結(jié)果精確到0.1m,可參考數(shù)據(jù)sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠沿路護(hù)欄的紋飾部分是由若干個(gè)和菱形ABCD(如圖①)全等的圖案組成的,每增加一個(gè)菱形,紋飾長(zhǎng)度就增加dcm(如圖②).已知菱形ABCD的邊長(zhǎng)為6cm,∠BAD=60°.

(1)求AC的長(zhǎng);

(2)若d=15cm,紋飾總長(zhǎng)度L為3918cm,則需要多少個(gè)這樣的菱形圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究:觀察下面由“※”組成的圖案和算式,解答問(wèn)題:

1+3=4=2=22

1+3+5=9=2=32

1+3+5+7=16=2=42

問(wèn)題解決:

1)試猜想1+3+5+7+9…+49的結(jié)果為

2)若n 表示正整數(shù),請(qǐng)用含n 的代數(shù)式表示1+3+5+7+9+…+2n1+2n+1 的結(jié)果.

問(wèn)題拓展:

3)請(qǐng)用上述規(guī)律計(jì)算:1017+1019+…+2017+2019

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊BO在x軸的負(fù)半軸上,∠BOC=60°,頂點(diǎn)C的坐標(biāo)為(m,3 ),反比例函數(shù)y= 的圖象與菱形對(duì)角線AO交D點(diǎn),連接BD,當(dāng)DB⊥x軸時(shí),k的值是( )

A.6
B.﹣6
C.12
D.﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)D是 上一點(diǎn),且∠BDE=∠CBE,BD與AE交于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若BD平分∠ABE,求證:DE2=DFDB;
(3)在(2)的條件下,延長(zhǎng)ED,BA交于點(diǎn)P,若PA=AO,DE=2,求PD的長(zhǎng)和⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上點(diǎn)A、C對(duì)應(yīng)的數(shù)分別為ac,且a、c,滿足|a+4|+(c12018=0,點(diǎn)O對(duì)應(yīng)的數(shù)為0,點(diǎn)B對(duì)應(yīng)的數(shù)為﹣3

1)求數(shù)a、c的值;

2)點(diǎn)A,B沿?cái)?shù)軸同時(shí)出發(fā)向右勻速運(yùn)動(dòng),點(diǎn)A速度為2個(gè)單位長(zhǎng)度/秒,點(diǎn)B速度為1個(gè)單位長(zhǎng)度/秒,幾秒后,點(diǎn)A追上點(diǎn)B;

3)在(2)的條件下,若運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)過(guò)程中,當(dāng)A,B兩點(diǎn)到原點(diǎn)O的距離相等時(shí),求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案