【題目】如圖,直線y=x﹣1與反比例函數(shù)y= 的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,已知點(diǎn)A的坐標(biāo)為(﹣1,m).

(1)反比例函數(shù)的解析式為 , 直線y=x﹣1在雙曲線y= 上方時(shí)x的取值范圍是
(2)若點(diǎn)P(n,﹣1)是反比例函數(shù)圖象上一點(diǎn),過點(diǎn)P作PE⊥x軸于點(diǎn)E,延長EP交直線AB于點(diǎn)F,求△CEF的面積.

【答案】
(1)y= ;﹣1<x<0或x>2
(2)解:∵點(diǎn)P(n,﹣1)是反比例函數(shù)圖象上一點(diǎn),

∴﹣1= ,解得n=﹣2,

∴E(﹣2,0),F(xiàn)(﹣2,﹣3).

∵直線y=x﹣1中,當(dāng)x=0時(shí),x=1,

∴C(1,0),

∴CE=|﹣2﹣1|=3,

∴SCEF= CEEF= ×3×3=


【解析】解:(1)∵A(﹣1,m),
∴m=﹣1﹣1=﹣2,
∴A(﹣1,﹣2),
∴k=(﹣1)×(﹣2)=2,
∴反比例函數(shù)的解析式為y=
聯(lián)立一次函數(shù)與反比例函數(shù)的解析式得 ,解得
∴B(2,1).
由函數(shù)圖象可知,當(dāng)﹣1<x<0或x>2時(shí),直線y=x﹣1在雙曲線y= 上方.
所以答案是:y= ,﹣1<x<0或x>2;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空:(1)a6÷a2=a6___2=a___;

(2)(-a)3÷(-a)2______)(_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】扇形統(tǒng)計(jì)圖中,某部分所對應(yīng)的扇形圓心角為36°,則該部分所占總體的百分比_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小聰和小敏在研究絕對值的問題時(shí),遇到了這樣一道題:
(1)當(dāng)式子|x﹣1|+|x+5|取最小值時(shí),x應(yīng)滿足的條件是 , 此時(shí)的最小值是 . 小聰說:利用數(shù)軸求線段的長可以解決這個(gè)問題.如圖,點(diǎn)A,B對應(yīng)的數(shù)分別為﹣5,1,則線段AB的長為6,我發(fā)現(xiàn)也可通過|1﹣(﹣5)|或|﹣5﹣1|來求線段AB的長,即數(shù)軸上兩點(diǎn)間的線段的長等于它們所對應(yīng)的兩數(shù)差的絕對值.

小敏說:我明白了,若點(diǎn)C在數(shù)軸上對應(yīng)的數(shù)為x,線段AC的長就可表示為|x﹣(﹣5)|,那么|x﹣1|表示的是線段的長.
小聰說:對,求式子|x﹣1|+|x+5|的最小值就轉(zhuǎn)化為數(shù)軸上求線段AC+BC長的最小值,而點(diǎn)C在線段AB上時(shí)AC+BC=AB最小,最小值為6.
小敏說:點(diǎn)C在線段AB上,即x取﹣5,1之間的有理數(shù)(包括﹣5,1),因此相應(yīng)x的取值范圍可表示為﹣5≤x≤1時(shí),最小值為6.
請你根據(jù)他們的方法解決下面的問題:
(2)小敏說的|x﹣1|表示的是線段的長;
(3)當(dāng)式子|x﹣3|+|x+2|取最小值時(shí),x應(yīng)滿足的條件是;
(4)當(dāng)式子|x﹣2|+|x+3|+|x+4|取最小值時(shí),x應(yīng)滿足的條件是;
(5)當(dāng)式子|x﹣a|+|x﹣b|+|x﹣c|+|x﹣d|(a<b<c<d)取最小值時(shí),x應(yīng)滿足的條件是 , 此時(shí)的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解全校2000名學(xué)生的課外閱讀情況,在全校范圍內(nèi)隨機(jī)調(diào)查了50名學(xué)生,得到他們在某一天各自課外閱讀所用時(shí)間的數(shù)據(jù),將結(jié)果繪制成頻數(shù)分布直方圖(如圖所示).

(1)這50名學(xué)生在這一天課外閱讀所用時(shí)間的眾數(shù)是多少?
(2)這50名學(xué)生在這一天平均每人的課外閱讀所用時(shí)間是多少?
(3)請你根據(jù)以上調(diào)查,估計(jì)全校學(xué)生中在這一天課外閱讀所用時(shí)間在1.0小時(shí)以上(含1.0小時(shí))的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C分別在坐標(biāo)軸上,頂點(diǎn)B的坐標(biāo)為(4,2).過點(diǎn)D(0,3)和E(6,0)的直線分別與AB,BC交于點(diǎn)M,N.

(1)求直線DE的解析式和點(diǎn)M的坐標(biāo);

(2)若反比例函數(shù)(x>0)的圖象經(jīng)過點(diǎn)M,求該反比例函數(shù)的解析式,并通過計(jì)算判斷點(diǎn)N是否在該函數(shù)的圖象上;

(3)若反比例函數(shù)(x>0)的圖象與△MNB有公共點(diǎn),請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果公司購進(jìn)10 000kg蘋果,公司想知道蘋果的損壞率,從所有蘋果中隨機(jī)抽取若干進(jìn)行統(tǒng)計(jì),部分結(jié)果如下表:

蘋果總質(zhì)量n(kg)

100

200

300

400

500

1000

損壞蘋果質(zhì)量m(kg)

10.50

19.42

30.63

39.24

49.54

101.10

蘋果損壞的頻率

(結(jié)果保留小數(shù)點(diǎn)后三位)

0.105

0.097

0.102

0.098

0.099

0.101

估計(jì)這批蘋果損壞的概率為_____(結(jié)果保留小數(shù)點(diǎn)后一位),損壞的蘋果約有______kg.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正六邊形的內(nèi)角和為 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求解答.
(1)計(jì)算:5a2b÷(﹣ ab)(2ab22
(2)計(jì)算:20142﹣2013×2015
(3)因式分解:a2(x﹣y)+4b2(y﹣x).

查看答案和解析>>

同步練習(xí)冊答案