【題目】正六邊形的內(nèi)角和為 度.

【答案】720。

解析直接根據(jù)多邊形內(nèi)角和定理作答:正六邊形的內(nèi)角和為(6-2)×1800=7200。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD相交于點O,增加下列條件后,ABCD不一定是菱形的是(

A.DC=BC
B.AC⊥BD
C.AB=BD
D.∠ADB=∠CDB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x﹣1與反比例函數(shù)y= 的圖象交于A,B兩點,與x軸交于點C,已知點A的坐標(biāo)為(﹣1,m).

(1)反比例函數(shù)的解析式為 , 直線y=x﹣1在雙曲線y= 上方時x的取值范圍是;
(2)若點P(n,﹣1)是反比例函數(shù)圖象上一點,過點P作PE⊥x軸于點E,延長EP交直線AB于點F,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(﹣1,0),(3,0),將線段AB先向上平移2個單位長度,再向右平移1個單位長度,得到線段CD,連接AC,BD,構(gòu)成平行四邊形ABDC.

(1)請寫出點C的坐標(biāo)為 , 點D的坐標(biāo)為 , S四邊形ABDC
(2)點Q在y軸上,且SQAB=S四邊形ABDC , 求出點Q的坐標(biāo);
(3)如圖(2),點P是線段BD上任意一個點(不與B、D重合),連接PC、PO,試探索∠DCP、∠CPO、∠BOP之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x﹣(k+1)與雙曲線y= 相交于B、C兩點,與x軸相交于A點,BM⊥x軸交x軸于點M,SOMB=

(1)求這兩個函數(shù)的解析式;
(2)若已知點C的橫坐標(biāo)為3,求A、C兩點坐標(biāo);
(3)在(2)條件下,是否存在點P,使以A、O、C、P為頂點的四邊形是平行四邊形?若存在,請直接寫出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求下列各式中x的值.
(1)9x2=121
(2)(x+1)3=27.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知tanα=0.3249,則α約為( 。
A.17°
B.18°
C.19°
D.20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)yax2的圖象過點(1,﹣2),則a的值是_____,在對稱軸左側(cè),yx的增大而_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好地保護環(huán)境,某市污水處理廠決定先購買A,B兩型污水處理設(shè)備共20臺,對周邊污水進行處理,每臺A型污水處理設(shè)備12萬元,每臺B型污水處理設(shè)備10萬元.已知2臺A型污水處理設(shè)備和1臺B型污水處理設(shè)備每周可以處理污水680噸,4臺A型污水處理設(shè)備和3臺B型污水處理設(shè)備每周可以處理污水1560噸.
(1)求A、B兩型污水處理設(shè)備每周每臺分別可以處理污水多少噸?
(2)經(jīng)預(yù)算,市污水處理廠購買設(shè)備的資金不超過230萬元,每周處理污水的量不低于4500噸,請你列舉出所有購買方案.
(3)如果你是廠長,從節(jié)約資金的角度來談?wù)勀銜x擇哪種方案并說明理由?

查看答案和解析>>

同步練習(xí)冊答案