【題目】某水果公司購進10 000kg蘋果,公司想知道蘋果的損壞率,從所有蘋果中隨機抽取若干進行統(tǒng)計,部分結(jié)果如下表:

蘋果總質(zhì)量n(kg)

100

200

300

400

500

1000

損壞蘋果質(zhì)量m(kg)

10.50

19.42

30.63

39.24

49.54

101.10

蘋果損壞的頻率

(結(jié)果保留小數(shù)點后三位)

0.105

0.097

0.102

0.098

0.099

0.101

估計這批蘋果損壞的概率為_____(結(jié)果保留小數(shù)點后一位),損壞的蘋果約有______kg.

【答案】 0.1 1000

【解析】根據(jù)表中的損壞的頻率實驗次數(shù)的增多時,蘋果損壞的頻率越來越穩(wěn)定在0.1左右,所以可估計蘋果損壞率大約是0.1,損壞的蘋果約有10000×0.1=1000kg.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列調(diào)查適合用普查的是(

A. 長江中現(xiàn)有魚的種類 B. 某品牌燈泡的使用壽命 C. 夏季冷飲市場上冰淇淋的質(zhì)量 D. 航天飛機的零件

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yx2x1x軸的一個交點的坐標為(m0),則代數(shù)式m2m2019的值為(   )

A. 2015B. 2016C. 2019D. 2020

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x﹣1與反比例函數(shù)y= 的圖象交于A,B兩點,與x軸交于點C,已知點A的坐標為(﹣1,m).

(1)反比例函數(shù)的解析式為 , 直線y=x﹣1在雙曲線y= 上方時x的取值范圍是;
(2)若點P(n,﹣1)是反比例函數(shù)圖象上一點,過點P作PE⊥x軸于點E,延長EP交直線AB于點F,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個周長為80cm的正方形,從四個角各減去一個正方形,做成一個無蓋盒子。設這個盒子的底面面積為y cm,減去的正方形的邊長為x cm,求yx的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在平面直角坐標系中,點A,B的坐標分別為(﹣1,0),(3,0),將線段AB先向上平移2個單位長度,再向右平移1個單位長度,得到線段CD,連接AC,BD,構(gòu)成平行四邊形ABDC.

(1)請寫出點C的坐標為 , 點D的坐標為 , S四邊形ABDC;
(2)點Q在y軸上,且SQAB=S四邊形ABDC , 求出點Q的坐標;
(3)如圖(2),點P是線段BD上任意一個點(不與B、D重合),連接PC、PO,試探索∠DCP、∠CPO、∠BOP之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣x﹣(k+1)與雙曲線y= 相交于B、C兩點,與x軸相交于A點,BM⊥x軸交x軸于點M,SOMB=

(1)求這兩個函數(shù)的解析式;
(2)若已知點C的橫坐標為3,求A、C兩點坐標;
(3)在(2)條件下,是否存在點P,使以A、O、C、P為頂點的四邊形是平行四邊形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知tanα=0.3249,則α約為(  )
A.17°
B.18°
C.19°
D.20°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=2x-3與反比例函數(shù)y=- ,那么它們在同一坐標系中的圖象可能是(  )。
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案