【題目】如圖,點,分別是銳角兩邊上的點,分別以點,為圓心,以,的長為半徑畫弧,兩弧相交于點,連接

1)請你判斷所畫四邊形的形狀,并說明理由;

2)若,請判斷此四邊形的形狀,并說明理由;

3)在(2)的條件下,連接,若厘米,,求線段的長.

【答案】1)(2)見解析;38厘米

【解析】

1)根據題意得出EDAF,AEDF,進而利用平行四邊形的判定解答即可;

2)由AEAFEDDF,根據四條邊都相等的四邊形是菱形,即可證得:四邊形AEDF是菱形;

3)首先連接EF,由AEAF,∠A60°,可證得△EAF是等邊三角形,則可求得線段EF的長.

解:(1)四邊形AEDF是平行四邊形,

根據題意可得:EDAFAEDF,

∴四邊形AEDF是平行四邊形;

2)菱形.

理由:∵根據題意得:AEAFEDDF

∴四邊形AEDF是菱形;

3)連接EF,交AD于點O,

AEAF,∠A60°,

∴△EAF是等邊三角形,

EFAE8厘米

EO=4,

由菱形的性質得∠AOE=90°,

在直角三角形AOE中,

∴AD=2AO=8

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,CA=CBCDAB且與OA的延長線交與點D

(1)判斷CD與⊙O的位置關系并說明理由;

(2)若∠ACB=120°,OA=2,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,AB兩點的坐標分別為A(2,2),B(2,﹣2).對于給定的線段AB及點P,Q,給出如下定義:若點Q關于AB所在直線的對稱點Q′落在△ABP的內部(不含邊界),則稱點Q是點P關于線段AB的內稱點.

(1)已知點P(4,﹣1).

Q1(1,﹣1),Q2(1,1)兩點中,是點P關于線段AB的內稱點的是   

若點M在直線yx﹣1上,且點M是點P關于線段AB的內稱點,求點M的橫坐標xM的取值范圍;

(2)已知點C(3,3),⊙C的半徑為r,點D(4,0),若點E是點D關于線段AB的內稱點,且滿足直線DEC相切,求半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線C1:y=mx2﹣2mx+m+4與y軸交于點A(0,3),與x軸交于點B、C(點B在點C左側).

(1)求該拋物線的解析式;

(2)求點B的坐標;

(3)若拋物線C2:y=a(x﹣1)2﹣1(a≠0)與線段AB恰有一個公共點,結合函數(shù)的圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy的中,一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)ym≠0)的圖象交于二、四象限內的A、B兩點,與x軸交于C點,點B的坐標為(6,n),線段OA,Ex軸上一點,且tan∠AOE

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求△A0B的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:我漁政310船在南海海面上沿正東方向勻速航行,A點觀測到我漁船C在北偏東60°方向的我國某傳統(tǒng)漁場捕魚作業(yè).若漁政310船航向不變,航行半小時后到達B,觀測到我漁船C在東北方向上.:漁政310船再按原航向航行多長時間,離漁船C的距離最近?(漁船C捕魚時移動距離忽略不計,結果不取近似值)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】知識再現(xiàn)

如圖1,若點,在直線同側,的距離分別是32,,現(xiàn)在直線上找一點,使的值最小,做法如下:

作點關于直線的對稱點,連接,與直線的交點就是所求的點,線段的長度即為的最小值,請你求出這個最小值.

實踐應用

如圖2,菱形,點,分別為線段,,上的任意一點,則的最小值為______;

拓展延伸

如圖3,在四邊形的對角線上找一點,使,保留作圖痕跡,不必寫出作法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊ADx軸平行,A、B兩點的橫坐標分別為13,反比例函數(shù)y=的圖象經過A、B兩點,則菱形ABCD的面積是( 。

A. 4 B. 4 C. 2 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的轉盤,分成三個相同的扇形,指針位置固定轉動轉盤后任其自由停止,其中的某個扇形會恰好停在指針所指的位置,并相應得到一個數(shù)(指針指向兩個扇形的交線時,當作指向右邊的扇形).

(1)求事件轉動一次,得到的數(shù)恰好是0”發(fā)生的概率;

(2)寫出此情景下一個不可能發(fā)生的事件.

(3)用樹狀圖或列表法,求事件轉動兩次,第一次得到的數(shù)與第二次得到的數(shù)絕對值相等發(fā)生的概率.

查看答案和解析>>

同步練習冊答案