【題目】知識(shí)再現(xiàn)
如圖1,若點(diǎn),在直線同側(cè),,到的距離分別是3和2,,現(xiàn)在直線上找一點(diǎn),使的值最小,做法如下:
作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),連接,與直線的交點(diǎn)就是所求的點(diǎn),線段的長(zhǎng)度即為的最小值,請(qǐng)你求出這個(gè)最小值.
實(shí)踐應(yīng)用
如圖2,菱形中,,點(diǎn),,分別為線段,,上的任意一點(diǎn),則的最小值為______;
拓展延伸
如圖3,在四邊形的對(duì)角線上找一點(diǎn),使,保留作圖痕跡,不必寫出作法.
【答案】知識(shí)再現(xiàn): ;
實(shí)踐應(yīng)用:
拓展延伸:圖形見(jiàn)詳解
【解析】
知識(shí)再現(xiàn):根據(jù)對(duì)稱性和勾股定理即可解題,
實(shí)踐應(yīng)用:先根據(jù)四邊形ABCD是菱形可知,AD∥BC,由∠A=120°可知∠B=60°,作點(diǎn)P關(guān)于直線BD的對(duì)稱點(diǎn)P′,連接P′Q,PC,則P′Q的長(zhǎng)即為PK+QK的最小值,由圖可知,當(dāng)點(diǎn)Q與點(diǎn)C重合,CP′⊥AB時(shí)PK+QK的值最小,再在Rt△BCP′中利用銳角三角函數(shù)的定義求出P′C的長(zhǎng)即可.
拓展延伸:作B關(guān)于AC的對(duì)稱點(diǎn),連接DE并延長(zhǎng),即可得出答案.
解:
知識(shí)再現(xiàn):
由對(duì)稱的性質(zhì)得到
∴AP+BP=
過(guò)點(diǎn)B作BD⊥AC于D,
∴AC=3,CD=2,AD=1,
在Rt△ADB中
在Rt△中
實(shí)踐應(yīng)用:∵四邊形ABCD是菱形,
∴AD∥BC,
∵∠A=120°,
∴∠B=180°∠A=180°120°=60°,
如圖2中,作點(diǎn)P關(guān)于直線BD的對(duì)稱點(diǎn)P′,連接P′Q,P′C,則P′Q的長(zhǎng)即為PK+QK的最小值,由圖可知,當(dāng)點(diǎn)Q與點(diǎn)C重合,CP′⊥AB時(shí)PK+QK的值最小,
在Rt△BCP′中,
∵BC=AB=2,∠B=60°,
∴P′Q=CP′=BCsinB=2×=
故答案為
拓展延伸:如圖3所示:作B關(guān)于AC的對(duì)稱點(diǎn)E,連接DE并延長(zhǎng)交AC于P即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為20元/千克.市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w (千克)與銷售價(jià)x (元/千克)有如下關(guān)系:w=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為y (元).
(1)求y與x之間的函數(shù)關(guān)系式,自變量x的取值范圍;
(2)當(dāng)銷售價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不得高于28元/千克,該農(nóng)戶想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為多少元?(參考關(guān)系:銷售額=售價(jià)×銷量,利潤(rùn)=銷售額﹣成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,, 是的中點(diǎn).點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng);點(diǎn)同時(shí)以每秒3個(gè)單位長(zhǎng)度的速度從 點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng).點(diǎn)停止運(yùn)動(dòng)時(shí),點(diǎn)也隨之停止運(yùn)動(dòng).當(dāng)運(yùn)動(dòng)時(shí)間秒時(shí),以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.則的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn),分別是銳角兩邊上的點(diǎn),分別以點(diǎn),為圓心,以,的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn),連接,.
(1)請(qǐng)你判斷所畫四邊形的形狀,并說(shuō)明理由;
(2)若,請(qǐng)判斷此四邊形的形狀,并說(shuō)明理由;
(3)在(2)的條件下,連接,若厘米,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時(shí)出發(fā),設(shè)客車離甲地的距離為千米,出租車離甲地的距離為千米,兩車行駛的時(shí)間為小時(shí),、關(guān)于的函數(shù)圖像如圖所示:
(1)根據(jù)圖像,求出、關(guān)于的函數(shù)關(guān)系式;
(2)設(shè)兩車之間的距離為千米.
①求兩車相遇前關(guān)于的函數(shù)關(guān)系式;
②求出租車到達(dá)甲地后關(guān)于的函數(shù)關(guān)系式;
(3)甲、乙兩地間有、兩個(gè)加油站,相距200千米,若客車進(jìn)入加油站時(shí),出租車恰好進(jìn)入加油站,求加油站離甲地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在函數(shù)的圖象上,從左向右第3個(gè)正方形中的一個(gè)頂點(diǎn)A的坐標(biāo)為,陰影三角形部分的面積從左向右依次記為、、、、,則的值為______用含n的代數(shù)式表示,n為正整數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PB為⊙O的切線,點(diǎn)B為切點(diǎn),直線PO交⊙O于點(diǎn)E,F,過(guò)點(diǎn)B作PO的垂線BA,垂足為點(diǎn)D,交⊙O于點(diǎn)A,延長(zhǎng)AO與⊙O交于點(diǎn)C,連接BC,AF,
(1)求證:直線PA為⊙O的切線;
(2)若BC=6,tan∠F=,求cos∠ACB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知ABCD的四個(gè)內(nèi)角的平分線分別相交于點(diǎn)E、F、G、H,連接AC.若EF=2,FG=GC=5,則AC的長(zhǎng)是( )
A. 12 B. 13 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)驗(yàn)初中組織了“英語(yǔ)手抄報(bào)”征集活動(dòng),現(xiàn)從中隨機(jī)抽取部分作品,按A、B、C、D四個(gè)等級(jí)進(jìn)行評(píng)價(jià),并根據(jù)統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)抽取了_____份作品;
(2)此次抽取的作品中等級(jí)為B的作品有______份,并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共征集到600份作品,請(qǐng)估計(jì)等級(jí)為A的作品約有多少份?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com