【題目】如圖是由邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),的頂點(diǎn)在格點(diǎn)上,且,以為原點(diǎn)建立平面直角坐標(biāo)系,平行于軸的直線經(jīng)過(guò),請(qǐng)按要求解答下列問(wèn)題.
(1)畫(huà)出關(guān)于直線的對(duì)稱,并直接寫(xiě)出點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo);
(2)求點(diǎn)到的距離;
(3)在軸右側(cè)的格點(diǎn)中找一點(diǎn),使,并直接寫(xiě)出點(diǎn)的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知ABC中∠BAC=150°,AB、AC的垂直平分線分別交BC于E、F.則∠EAF的度數(shù)為______;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的邊BC與x軸重合,B、C對(duì)應(yīng)的橫坐標(biāo)是一元二次方程的兩根,E是AD與y軸的交點(diǎn),其縱坐標(biāo)為2,過(guò)A、C作直線交y軸于F.
(1)求直線AF的解析式.
(2)M是BC上一點(diǎn),其橫坐標(biāo)為2,在坐標(biāo)軸上,你能否找到一點(diǎn)P,使?若能,求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
(3)點(diǎn)Q是x軸上一動(dòng)點(diǎn),連接AQ,Q在運(yùn)動(dòng)過(guò)程中AQ+是否存在最小值?若存在,請(qǐng)求出AQ+最小值及Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O 是直角△ABC 的外接圓,∠ABC=90 ,AB=12,BC=5, 弦 BD=BA,BE 垂直 DC 的延長(zhǎng)線于點(diǎn) E,
(1)求證:∠BCA=∠BAD.
(2)求證:△ABC∽△DEB
(3)求 DE 的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)拋物線的頂點(diǎn)為N,在x軸上找一點(diǎn)K,使CK+KN最小,并求出點(diǎn)K的坐標(biāo);
(3)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(4)若平行于x軸的動(dòng)直線l與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問(wèn):是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2-4=0.
(1)當(dāng)m為何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?
(2)若邊長(zhǎng)為5的菱形的兩條對(duì)角線的長(zhǎng)分別為方程兩根的2倍,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為點(diǎn)D,點(diǎn)E,BE、CD相交于點(diǎn)O.∠1=∠2,則圖中全等三角形共有( )
A. 4對(duì)B. 3對(duì)C. 2對(duì)D. 5對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D,E是BC邊上的兩點(diǎn),AD=AE,BE=CD,∠1=∠2=110°,∠BAE=60°,則∠CAE的度數(shù)為( )
A.10°B.20°
C.30°D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們?cè)趯W(xué)習(xí)“實(shí)數(shù)”時(shí)畫(huà)了這樣一個(gè)圖,即“以數(shù)軸上的單位長(zhǎng)為‘1’的線段作一個(gè)正方形,然后以原點(diǎn)O為圓心,正方形的對(duì)角線長(zhǎng)為半徑畫(huà)弧交數(shù)軸于點(diǎn)A”,請(qǐng)根據(jù)圖形回答下列問(wèn)題:
(1)線段OA的長(zhǎng)度是多少?(要求寫(xiě)出求解過(guò)程)
(2)這個(gè)圖形的目的是為了說(shuō)明什么?
(3)這種研究和解決問(wèn)題的方式體現(xiàn)了 的數(shù)學(xué)思想方法.(將下列符合的選項(xiàng)序號(hào)填在橫線上)
A.數(shù)形結(jié)合 B.代入 C.換元 D.歸納
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com