已知點(diǎn)D在AB上,點(diǎn)E在AC上,BE和CD相交于點(diǎn)O,AB=AC,

∠B=∠C.(如圖)求證:OB=OC.

答案:略
解析:

證明:在△ADC和△AEB中,

∴△ACD≌△ABE(ASA).∴AD=AE(全等三角形的對(duì)應(yīng)邊相等)

又∵AB=ACBD=CE.在△BOD和△COE中.

∴△BOD≌△COE(AAS)OB=OC


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,在?ABCD中,已知點(diǎn)E在AB上,點(diǎn)F在CD上且AE=CF.
(1)求證:DE=BF;
(2)連接BD,并寫出圖中所有的全等三角形.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•河西區(qū)二模)如圖①,已知點(diǎn)D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M為EC的中點(diǎn).
(1)求證:△BMD為等腰直角三角形.
(思路點(diǎn)撥:考慮M為EC的中點(diǎn)的作用,可以延長DM交BC于N,構(gòu)造△CMN≌△EMD,于是ED=CN=DA,即可以證明△BND也是等腰直角三角形,且BM是等腰三角形底邊的中線就可以了.)請(qǐng)你完成證明過程:
(2)將△ADE繞點(diǎn)A再逆時(shí)針旋轉(zhuǎn)90°時(shí)(如圖②所示位置),△BMD為等腰直角三角形的結(jié)論是否仍成立?若成立,請(qǐng)證明:若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鹽城模擬)如圖1,已知點(diǎn)A(a,0),B(0,b),且a、b滿足
a+1
+(a+b+3)2=0
,?ABCD的邊AD與y軸交于點(diǎn)E,且E為AD中點(diǎn),雙曲線y=
k
x
經(jīng)過C、D兩點(diǎn).
(1)求k的值;
(2)點(diǎn)P在雙曲線y=
k
x
上,點(diǎn)Q在y軸上,若以點(diǎn)A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,試求滿足要求的所有點(diǎn)P、Q的坐標(biāo);
(3)以線段AB為對(duì)角線作正方形AFBH(如圖3),點(diǎn)T是邊AF上一動(dòng)點(diǎn),M是HT的中點(diǎn),MN⊥HT,交AB于N,當(dāng)T在AF上運(yùn)動(dòng)時(shí),
MN
HT
的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請(qǐng)求出其值,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)D在AB上,點(diǎn)E在AC上,BE和CD相交于點(diǎn)O,AB=AC,∠B=∠C.
求證:△ABE≌△ACD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,已知點(diǎn)E在AB上,點(diǎn)F在CD上,且AE=CF.
求證:DE=BF.

查看答案和解析>>

同步練習(xí)冊(cè)答案