【題目】已知圖甲是一個(gè)長為2m,寬為2n的長方形,沿圖中虛線用剪刀均剪成四個(gè)小長方形,然后拼成如圖乙所示的一個(gè)大正方形.
(1)你認(rèn)為圖乙中的陰影部分的正方形的邊長= ;
(2)請用兩種不同的方法求圖乙中陰影部分的面積:
方法一:
方法二:
(3)觀察圖乙,請你寫出下列代數(shù)式之間的等量關(guān)系:
(m+n)2、(m﹣n)2、mn
.
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:若a+b=8,ab=7,求a﹣b的值.
【答案】(1)m﹣n;(2)方法一:(m﹣n)2,方法二:(m+n)2﹣4mn;(3)(m﹣n)2=(m+n)2﹣4mn;(4)a﹣b=±6.
【解析】
(1)根據(jù)圖乙中的陰影部分的正方形的邊長等于小長方形的長減去寬進(jìn)行判斷;
(2)圖乙中陰影部分的面積既可以用邊長的平方進(jìn)行計(jì)算,也可以用大正方形的面積減去四個(gè)小長方形的面積進(jìn)行計(jì)算;
(3)根據(jù)(m﹣n)2和(m+n)2﹣4mn表示同一個(gè)圖形的面積進(jìn)行判斷;
(4)根據(jù)(a﹣b)2=(a+b)2﹣4ab,進(jìn)行計(jì)算即可得到a﹣b的值.
(1)由題可得,圖乙中的陰影部分的正方形的邊長等于m﹣n;
故答案為:m﹣n;
(2)方法一:
圖乙中陰影部分的面積=(m﹣n)2
方法二:
圖乙中陰影部分的面積=(m+n)2﹣4mn;
故答案為:(m﹣n)2,(m+n)2﹣4mn;
(3)∵(m﹣n)2和(m+n)2﹣4mn表示同一個(gè)圖形的面積;
∴(m﹣n)2=(m+n)2﹣4mn;
故答案為:(m﹣n)2=(m+n)2﹣4mn;
(4)∵(a﹣b)2=(a+b)2﹣4ab,
而a+b=8,ab=7,
∴(a﹣b)2=82﹣4×7=64﹣28=36,
∴a﹣b=±6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于軸對稱的△A1B1C1,并寫出△A1B1C1各頂點(diǎn)的坐標(biāo);
(2)將△ABC向右平移6個(gè)單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點(diǎn)的坐標(biāo);
(3)觀察△A1B1C和△A2B2C2,它們是否關(guān)于某直線對稱?若是,請用實(shí)線條畫出對稱軸。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)在軸正半軸上,點(diǎn)在軸的負(fù)半軸上,點(diǎn)在軸正半軸上,,梯形的面積為,,.
(1)求點(diǎn),的坐標(biāo);
(2)點(diǎn)從點(diǎn)出發(fā)以個(gè)單位/秒的速度沿向終點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)從點(diǎn)出發(fā)以個(gè)單位秒的速度沿向終點(diǎn)運(yùn)動(dòng),設(shè)點(diǎn)的橫坐標(biāo)為,線段的長為,用含的關(guān)系式表示,并直接寫出相應(yīng)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】本學(xué)期學(xué)習(xí)了分式方程的解法,下面是晶晶同學(xué)的解題過程:
解方程
解:整理,得: …………………………第①步
去分母,得: …………………………第②步
移項(xiàng),得: ……………………… 第③步
合并同類項(xiàng),得: ……………………… 第④步
系數(shù)化1,得: …………………………第⑤步
檢驗(yàn):當(dāng)時(shí),
所以原方程的解是. ………………………第⑥步
上述晶晶的解題過程從第_____步開始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是_________________.請你幫晶晶改正錯(cuò)誤,寫出完整的解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,已知,,,點(diǎn)是邊上的任意一動(dòng)點(diǎn),點(diǎn)與點(diǎn)關(guān)于直線對稱,直線與直線相交于點(diǎn).
(1)求邊上的高;
(2)當(dāng)為何值時(shí),△與△重疊部分的面積最大,并求出最大值;
(3)連接,當(dāng)為直角三角形時(shí),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是春運(yùn)期間的一個(gè)回家場景。一種拉桿式旅行箱的示意圖如圖所示,箱體長AB=50cm,拉桿最大伸長距離BC=30cm,點(diǎn)A到地面的距離AD=8cm,旅行箱與水平面AE成60°角,求拉桿把手處C到地面的距離(精確到1cm).(參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙A與y軸相切于點(diǎn)B(0, ),與x軸相交于M,N兩點(diǎn),如果點(diǎn)M的坐標(biāo)為( ,0),求點(diǎn)N的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E在AD上,連接CE并延長與BA的延長線交于點(diǎn)F,若AE=2ED,則 的值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】麒麟?yún)^(qū)第七中學(xué)現(xiàn)有一塊空地ABCD如圖所示,現(xiàn)計(jì)劃在空地上種草皮,經(jīng)測量,∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m.
(1)求出空地ABCD的面積?
(2)若每種植1平方米草皮需要300元,問總共需投入多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com