【題目】如圖,四邊形ABCD是平行四邊形,點E是邊CD上一點,且BC=EC,CF⊥BE交AB于點F,P是EB延長線上一點,下列結(jié)論:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正確結(jié)論的個數(shù)為( )
A.1B.2C.3D.4
【答案】D
【解析】
分別利用平行線的性質(zhì)結(jié)合線段垂直平分線的性質(zhì)以及等腰三角形的性質(zhì)分別判斷得出答案.
證明:如圖:
∵BC=EC,
∴∠CEB=∠CBE,
∵四邊形ABCD是平行四邊形,
∴DC∥AB,
∴∠CEB=∠EBF,
∴∠CBE=∠EBF,
∴①BE平分∠CBF,正確;
∵BC=EC,CF⊥BE,
∴∠ECF=∠BCF,
∴②CF平分∠DCB,正確;
∵DC∥AB,
∴∠DCF=∠CFB,
∵∠ECF=∠BCF,
∴∠CFB=∠BCF,
∴BF=BC,
∴③正確;
∵FB=BC,CF⊥BE,
∴B點一定在FC的垂直平分線上,即PB垂直平分FC,
∴PF=PC,故④正確.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將含有 30°角的直角三角板 OAB 如圖放置在平面直角坐標(biāo)系中,OB 在 x軸上,若 OA=2,將三角板繞原點 O 順時針旋轉(zhuǎn) 75°,則點 A 的對應(yīng)點 A′ 的坐標(biāo)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△AOB 的頂點 O 為圓心,OB 為半徑作⊙O,交 OA 于點 E,交 AB 于點 D,連接 DE,DE∥OB,延長 AO 交⊙O 于點 C,連接 CB.
(1)求證:;
(2)若 AD=4,AE=CE,求 OC 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅樹林學(xué)校在七年級新生中舉行了全員參加的“防溺水”安全知識競賽,試卷題目共10題,每題10分.現(xiàn)分別從三個班中各隨機取10名同學(xué)的成績(單位:分),收集數(shù)據(jù)如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理數(shù)據(jù):
分?jǐn)?shù) 人數(shù) 班級 | 60 | 70 | 80 | 90 | 100 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
1班 | 83 | 80 | 80 |
2班 | 83 | ||
3班 | 80 | 80 |
根據(jù)以上信息回答下列問題:
(1)請直接寫出表格中的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認(rèn)為哪個班的成績比較好?請說明理由;
(3)為了讓學(xué)生重視安全知識的學(xué)習(xí),學(xué)校將給競賽成績滿分的同學(xué)頒發(fā)獎狀,該校七年級新生共570人,試估計需要準(zhǔn)備多少張獎狀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金桔是瀏陽的特色水果,金桔一上市,水果店的老板就用1200元購進一批金桔,很快售完,老板又用2500元購進第二批金桔,所購件數(shù)是第一批的2倍,但進價比第一批每件多了5元.
(1)第一批金桔每件進價為多少元?
(2)水果店老板銷售這兩批金桔時,每件售價都是150元,當(dāng)?shù)诙鸾凼鄢?/span>80%后,決定打七折促銷,結(jié)果全部售完,水果店老板共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,,點是的中點.點以每秒1個單位長度的速度從點出發(fā),沿向點運動;同時,點以每秒2個單位長度的速度從點出發(fā),沿向點運動.點停止運動時,點也隨之停止運動.求當(dāng)運動時間為多少秒時,以點,,,為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著車輛的增加,交通違規(guī)的現(xiàn)象越來越嚴(yán)重,交警對某雷達測速區(qū)檢測到的一組汽車的時速數(shù)據(jù)進行整理,得到其頻數(shù)及頻率如表(未完成):
數(shù)據(jù)段 | 頻數(shù) | 頻率 |
30~40 | 10 | 0.05 |
40~50 | 36 | |
50~60 | 0.39 | |
60~70 | ||
70~80 | 20 | 0.10 |
總計 | 200 | 1 |
注:30~40為時速大于等于30千米而小于40千米,其他類同
(1)請你把表中的數(shù)據(jù)填寫完整;
(2)補全頻數(shù)分布直方圖;
(3)如果汽車時速不低于60千米即為違章,則違章車輛共有多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于第一、象限內(nèi)的,兩點,與軸交于點.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)時,的取值范圍;
(3)長為2的線段在射線上左右移動,若射線上存在三個點使得為等腰三角形,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰△ABC 中,AB=AC,∠BAC=120°,點 P 為平面內(nèi)一點.
(1)如圖 1,當(dāng)點 P 在邊 BC 上時,且滿足∠APC=120°,求的值;
(2)如圖 2,當(dāng)點 P 在△ABC 的外部,且滿足∠APC+∠BPC=90°,求證:BP=AP;
(3)如圖 3,點 P 滿足∠APC=60°,連接 BP,若 AP=1,PC=3,直接寫出BP 的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com