【題目】如圖所示雙曲線y=與y=﹣分別位于第三象限和第二象限,A是y軸上任意一點(diǎn),B是y=﹣上的點(diǎn),C是y=上的點(diǎn),線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個(gè)象限內(nèi),y隨x的增大而減;②若點(diǎn)B的橫坐標(biāo)為﹣3,則C點(diǎn)的坐標(biāo)為(﹣3,);③k=4;④△ABC的面積為定值7,正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線p: 的頂點(diǎn)為C,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)為C′,我們稱以A為頂點(diǎn)且過點(diǎn)C′,對(duì)稱軸與y軸平行的拋物線為拋物線p的“夢(mèng)之星”拋物線,直線AC′為拋物線p的“夢(mèng)之星”直線.若一條拋物線的“夢(mèng)之星”拋物線和“夢(mèng)之星”直線分別是和y=2x+2,則這條拋物線的解析式為____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy(如圖)中,拋物線y=ax2+bx+2經(jīng)過點(diǎn)A(4,0)、B(2,2),與y軸的交點(diǎn)為C.
(1)試求這個(gè)拋物線的表達(dá)式;
(2)如果這個(gè)拋物線的頂點(diǎn)為M,求△AMC的面積;
(3)如果這個(gè)拋物線的對(duì)稱軸與直線BC交于點(diǎn)D,點(diǎn)E在線段AB上,且∠DOE=45°,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是Rt△ABC的AB邊上一點(diǎn),∠ACB=90°,⊙O與AC相切于點(diǎn)D,與邊AB,BC分別相交于點(diǎn)E,F.
(1)求證:DE=DF;
(2)當(dāng)BC=3,sinA=時(shí),求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AC是直徑,∠A=30°,BC=4,點(diǎn)D是AB的中點(diǎn),連接DO并延長交⊙O于點(diǎn)P.
(1)求劣弧PC的長(結(jié)果保留π);
(2)過點(diǎn)P作PF⊥AC于點(diǎn)F,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A,作AC⊥x軸于點(diǎn)C.
(1)求k的值;
(2)直線y=ax+b(a≠0)圖象經(jīng)過點(diǎn)A交x軸于點(diǎn)B,且OB=2AC.求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一面12米長的墻,某農(nóng)戶計(jì)劃用28米長的籬笆靠墻圍成一個(gè)矩形養(yǎng)雞場(chǎng)ABCD(籬笆只圍AB、BC、CD三邊),其示意圖如圖所示.
(1)若矩形養(yǎng)雞場(chǎng)的面積為92平方米,求所用的墻長AD.(結(jié)果精確到0.1米)(參考數(shù)據(jù):=1.41,=1.73,=2.24)
(2)求此矩形養(yǎng)雞場(chǎng)的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,點(diǎn)E為線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A,B重合),連接CE,將∠ACE的兩邊CE,CA分別繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到射線CE,,CA,,過點(diǎn)A作AB的垂線AD,分別交射線CE,,CA,于點(diǎn)F,G.
(1)依題意補(bǔ)全圖形;
(2)若∠ACE=α,求∠AFC 的大。ㄓ煤α的式子表示);
(3)用等式表示線段AE,AF與BC之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組,利用樹影測(cè)量樹高,如圖(1),已測(cè)出樹AB的影長AC為12米,并測(cè)出此時(shí)太陽光線與地面成30°夾角.
(1)求出樹高AB;
(2)因水土流失,此時(shí)樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設(shè)太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com