【題目】如圖,在RtABC中,∠ABC=90°,AB=BC,E為線段AB上一動點(不與點A,B重合),連接CE,將∠ACE的兩邊CE,CA分別繞點C順時針旋轉90°,得到射線CE,CA,,過點AAB的垂線AD,分別交射線CE,,CA,于點FG.

(1)依題意補全圖形;

(2)若∠ACE=α,求∠AFC 的大。ㄓ煤α的式子表示);

(3)用等式表示線段AE,AFBC之間的數(shù)量關系,并證明.

【答案】(1)補全的圖形如圖所示見解析;(2)AFC =α+45°;(3)AE,AFBC之間的數(shù)量關系為 .證明見解析.

【解析】

1)利用旋轉的性質進而得出對應點位置進而得出答案;(2)根據旋轉得出∠ECF=ACG=90°,∠FCG=ACE=α,最后用三角形的外角的性質即可得出結論;(3)借助(2)的結論判斷出ACE≌△GCFASA),得出AE=FG,再用勾股定理得出AG=

AC,AC=BC,即可得出結論.

1)補全的圖形如圖所示.

(2)解:由題意可知,∠ECF=ACG=90°

∴∠FCG=ACE=α

∵過點AAB的垂線AD

∴∠BAD=90°

AB=BC,ABC=90°

∴∠ACB=CAD= 45°

∵∠ACG=90°

∴∠AGC=45°

∴∠AFC =α+45°

3AE,AFBC之間的數(shù)量關系為

證明:由(2)可知∠DAC=AGC=45°

CA=CG

∵∠ACE =GCF,∠CAE =CGF

∴△ACE ≌△GCF

AE =FG.

RtACG中,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了了解江城中學學生的身高情況,隨機對該校男生、女生的身高進行抽樣調查.已知抽取的樣本中,男生、女生的人數(shù)相同,根據所得數(shù)據繪制成如圖所示的統(tǒng)計圖表.

組別

身高(cm)

A

x<150

B

150≤x<155

C

155≤x<160

D

160≤x<165

E

x≥165

  

根據圖表中提供的信息,回答下列問題:

(1)在樣本中,男生身高的中位數(shù)落在________(填組別序號),女生身高在B組的人數(shù)有________人;

(2)在樣本中,身高在150≤x155之間的人數(shù)共有________人,身高人數(shù)最多的在________(填組別序號);

(3)已知該校共有男生500人、女生480人,請估計身高在155≤x165之間的學生有多少人

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示雙曲線y=與y=﹣分別位于第三象限和第二象限,A是y軸上任意一點,B是y=﹣上的點,C是y=上的點,線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個象限內,y隨x的增大而減;②若點B的橫坐標為﹣3,則C點的坐標為(﹣3,);③k=4;④△ABC的面積為定值7,正確的有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.

(1)求甲選擇A部電影的概率;

(2)求甲、乙、丙3人選擇同一部電影的概率(請用畫樹狀圖的方法給出分析過程,并求出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小松設計的做圓的內接等腰直角三角形的尺規(guī)作圖過程.

已知:⊙O.

求作:⊙O的內接等腰直角三角形.

作法:如圖,

①作直徑AB

②分別以點A,B為圓心,以大于的同樣長為半徑作弧,兩弧交于M,N兩點;

③作直線MN交⊙O于點C,D;

④連接AC,BC

所以ABC就是所求作的三角形.

根據小松設計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵AB是直徑, C是⊙O上一點

ACB= ( ) (填寫推理依據)

AC=BC( )(填寫推理依據)

∴△ABC是等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的方格紙(每個小方格都是邊長為1個單位的正方形)中建立平面直角坐標系,△ABC的三個頂點都在格點上,點A的坐標為(2,4),請解答下列問題:

1)畫出△ABC關于x軸對稱的△A1B1C1,并寫出點B1的坐標;

2)畫出△ABC繞原點O逆時針旋轉90°后得到的△A2B2C2;

3)求出(2)中C點旋轉到C2點所經過的路徑長(結果保留根號和x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線 ,⊙O分別相切于點A和點B.點M和點N分別是上的動點,MN沿平移.⊙O的半徑為1,∠160°.下列結論錯誤的是( 。

A. B. l1l2的距離為2

C. 若∠MON90°,則MN與⊙O相切 D. MN與⊙O相切,則

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)a、b、c為常數(shù)且a≠0)中的xy的部分對應值如下表:

x

3

2

1

0

1

2

3

4

5

y

12

5

0

3

4

3

0

5

12

給出了結論:

1)二次函數(shù)有最小值,最小值為﹣3;

2)當時,y0;

3)二次函數(shù)的圖象與x軸有兩個交點,且它們分別在y軸兩側.

則其中正確結論的個數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB兩點的坐標分別為A02),B2,0),直線AB與反比例函數(shù)y=的圖象交于點C和點D(﹣1,a).

1)求直線AB和反比例函數(shù)的解析式;

2)求∠ACO的度數(shù).

查看答案和解析>>

同步練習冊答案