【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,點E為線段AB上一動點(不與點A,B重合),連接CE,將∠ACE的兩邊CE,CA分別繞點C順時針旋轉90°,得到射線CE,,CA,,過點A作AB的垂線AD,分別交射線CE,,CA,于點F,G.
(1)依題意補全圖形;
(2)若∠ACE=α,求∠AFC 的大。ㄓ煤α的式子表示);
(3)用等式表示線段AE,AF與BC之間的數(shù)量關系,并證明.
【答案】(1)補全的圖形如圖所示見解析;(2)∠AFC =α+45°;(3)AE,AF與BC之間的數(shù)量關系為 .證明見解析.
【解析】
(1)利用旋轉的性質進而得出對應點位置進而得出答案;(2)根據旋轉得出∠ECF=∠ACG=90°,∠FCG=∠ACE=α,最后用三角形的外角的性質即可得出結論;(3)借助(2)的結論判斷出△ACE≌△GCF(ASA),得出AE=FG,再用勾股定理得出AG=
AC,AC=BC,即可得出結論.
(1)補全的圖形如圖所示.
(2)解:由題意可知,∠ECF=∠ACG=90°
∴∠FCG=∠ACE=α
∵過點A作AB的垂線AD
∴∠BAD=90°
∵AB=BC,∠ABC=90°,
∴∠ACB=∠CAD= 45°
∵∠ACG=90°
∴∠AGC=45°
∴∠AFC =α+45°
(3)AE,AF與BC之間的數(shù)量關系為
證明:由(2)可知∠DAC=∠AGC=45°
∴CA=CG
∵∠ACE =∠GCF,∠CAE =∠CGF
∴△ACE ≌△GCF
∴AE =FG.
在Rt△ACG中,
∴
∴
∵
∴
科目:初中數(shù)學 來源: 題型:
【題目】為了了解江城中學學生的身高情況,隨機對該校男生、女生的身高進行抽樣調查.已知抽取的樣本中,男生、女生的人數(shù)相同,根據所得數(shù)據繪制成如圖所示的統(tǒng)計圖表.
組別 | 身高(cm) |
A | x<150 |
B | 150≤x<155 |
C | 155≤x<160 |
D | 160≤x<165 |
E | x≥165 |
根據圖表中提供的信息,回答下列問題:
(1)在樣本中,男生身高的中位數(shù)落在________組(填組別序號),女生身高在B組的人數(shù)有________人;
(2)在樣本中,身高在150≤x<155之間的人數(shù)共有________人,身高人數(shù)最多的在________組(填組別序號);
(3)已知該校共有男生500人、女生480人,請估計身高在155≤x<165之間的學生有多少人
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示雙曲線y=與y=﹣分別位于第三象限和第二象限,A是y軸上任意一點,B是y=﹣上的點,C是y=上的點,線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個象限內,y隨x的增大而減;②若點B的橫坐標為﹣3,則C點的坐標為(﹣3,);③k=4;④△ABC的面積為定值7,正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.
(1)求甲選擇A部電影的概率;
(2)求甲、乙、丙3人選擇同一部電影的概率(請用畫樹狀圖的方法給出分析過程,并求出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小松設計的“做圓的內接等腰直角三角形”的尺規(guī)作圖過程.
已知:⊙O.
求作:⊙O的內接等腰直角三角形.
作法:如圖,
①作直徑AB;
②分別以點A,B為圓心,以大于的同樣長為半徑作弧,兩弧交于M,N兩點;
③作直線MN交⊙O于點C,D;
④連接AC,BC.
所以△ABC就是所求作的三角形.
根據小松設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵AB是直徑, C是⊙O上一點
∴ ∠ACB= ( ) (填寫推理依據)
∵AC=BC( )(填寫推理依據)
∴△ABC是等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的方格紙(每個小方格都是邊長為1個單位的正方形)中建立平面直角坐標系,△ABC的三個頂點都在格點上,點A的坐標為(2,4),請解答下列問題:
(1)畫出△ABC關于x軸對稱的△A1B1C1,并寫出點B1的坐標;
(2)畫出△ABC繞原點O逆時針旋轉90°后得到的△A2B2C2;
(3)求出(2)中C點旋轉到C2點所經過的路徑長(結果保留根號和x)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線∥ ,⊙O與和分別相切于點A和點B.點M和點N分別是和上的動點,MN沿和平移.⊙O的半徑為1,∠1=60°.下列結論錯誤的是( 。
A. B. l1和l2的距離為2
C. 若∠MON=90°,則MN與⊙O相切 D. 若MN與⊙O相切,則
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)(a、b、c為常數(shù)且a≠0)中的x與y的部分對應值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結論:
(1)二次函數(shù)有最小值,最小值為﹣3;
(2)當時,y<0;
(3)二次函數(shù)的圖象與x軸有兩個交點,且它們分別在y軸兩側.
則其中正確結論的個數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A、B兩點的坐標分別為A(0,2),B(2,0),直線AB與反比例函數(shù)y=的圖象交于點C和點D(﹣1,a).
(1)求直線AB和反比例函數(shù)的解析式;
(2)求∠ACO的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com