已知y是x的一次函數(shù),當x=2時,y=-1,且這個一次函數(shù)的圖象與直線y=2x平行.試求y與x的函數(shù)關系式.

y與x的函數(shù)關系式為y=2x-5.

解析試題分析:首先設一次函數(shù)解析式為y=kx+b,根據(jù)若兩條直線是平行的關系,那么它們的自變量系數(shù)相同,即k值相同可得一次函數(shù)解析式為y=2x+b,再把x=2時,y=-1代入可得一次函數(shù)解析式.
試題解析:
設一次函數(shù)解析式為y=kx+b,
∵一次函數(shù)的圖象與直線y=2x平行,
∴k=2,
∴一次函數(shù)解析式為y=2x+b,
∵當x=2時,y=-1,
∴2×2+b=-1,
解得b=-5,
∴y與x的函數(shù)關系式為y=2x-5.
考點:兩條直線相交或平行問題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(2,3),B(-3,n)兩點.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集______________;
(3)過點B作BC⊥x軸,垂足為C,求SABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺.現(xiàn)將這50臺聯(lián)合收割機派往A、B兩地收割小麥,其中30臺派往A地,20臺派往B地.兩地區(qū)與該租賃公司商定的每天的租賃價格如下:

 
甲型收割機的租金
乙型收割機的租金
A地
  1800元/臺
  1600元/臺
B地
  1600元/臺
  1200元/臺
(1)設派往A地x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),請用x表示y,并注明x的范圍.
(2)若使租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79600元,說明有多少種分派方案,并將各種方案寫出.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知一次函數(shù)y=(12m)x+m+1,求當m為何值時.
(1)y隨x的增大而增大?
(2)圖象經(jīng)過第一、二、四象限?
(3)圖象經(jīng)過第二、四象限?
(4)圖象與y軸的交點在x軸的下方?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某食品加工廠需要一批食品包裝盒,供應這種包裝盒有兩種方案可供選擇:
方案1:從包裝盒加工廠直接購買,購買所需的費用y1與包裝盒數(shù)x滿足如圖的函數(shù)關系。
方案2:租憑機器自己加工,所需費用y2(包括租憑機器的費用和生產(chǎn)包裝盒的費用)
與包裝盒數(shù)滿足如圖的函數(shù)關系。

根據(jù)圖象回答下列問題:
(1)方案1中每個包裝盒的價格是多少元?
(2)方案2中租憑機器的費用是多少元?生產(chǎn)一個包裝盒的費用是多少元?
(3)請分別求出y1,y2,與x的函數(shù)表達式
(4)如果你是決策者,你認為應該選擇哪種方案更省錢?并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

“十一黃金周”的某一天,小剛?cè)疑衔?時自駕小汽車從家里出發(fā),到距離180千米的某著名旅游景點游玩,該小汽車離家的路程S(千米)與時間t (時)的關系可以用右圖的折線表示。根據(jù)圖象提供的有關信息,解答下列問題:

(1)小剛?cè)以诼糜尉包c游玩了多少小時?
(2)求出整個旅程中S(千米)與時間t (時)的函數(shù)關系式,并求出相應自變量t的取值范圍。
(3)小剛?cè)以谑裁磿r候離家120㎞?什么時候到家?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知y1與x成正比例,y2與x+2成正比例,且y=y1+y2,當x=2時,y=4;當x=-1時,y=7,求y與x之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達甲地停留一段時間,原路原速返回,追上小明后兩人一起步行到乙地.設小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.

(1)求小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關系式;
(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關系式;
(3)在圖2中,補全整個過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在國道202公路改建工程中,某路段長4000米,由甲乙兩個工程隊擬在30天內(nèi)(含30天)合作完成,已知兩個工程隊各有10名工人(設甲乙兩個工程隊的工人全部參與生產(chǎn),甲工程隊每人每天的工作量相同,乙工程隊每人每天的工作量相同),甲工程隊1天、乙工程隊2天共修路200米;甲工程隊2天,乙工程隊3天共修路350米.
(1)試問甲乙兩個工程隊每天分別修路多少米?
(2)甲乙兩個工程隊施工10天后,由于工作需要需從甲隊抽調(diào)m人去學習新技術,總部要求在規(guī)定時間內(nèi)完成,請問甲隊可以抽調(diào)多少人?
(3)已知甲工程隊每天的施工費用為0.6萬元,乙工程隊每天的施工費用為0.35萬元,要使該工程的施工費用最低,甲乙兩隊需各做多少天?最低費用為多少?

查看答案和解析>>

同步練習冊答案