【題目】已知:點P(m,4)在反比例函數y=﹣的圖象上,正比例函數的圖象經過點P和點Q(6,n).
(1)求正比例函數的解析式;
(2)求P、Q兩點之間的距離.
【答案】(1)y=-x;(2)15.
【解析】
(1)設正比例函數解析式為y=kx(k≠0),把點P的坐標代入反比例函數解析式求出m的值,從而得到點P的坐標,然后代入正比例函數解析式求解即可;
(2)把點Q的坐標代入正比例函數解析式求出n,根據兩點間的距離公式即可得到結論.
(1)設正比例函數解析式為y=kx(k≠0),
∵點P(m,4)在反比例函數y=-的圖象上,
∴-=4,
解得m=-3,
∴P的坐標為(-3,4),
∵正比例函數圖象經過點P,
∴-3k=4,
解得k=-,
∴正比例函數的解析式為y=-x;
(2)∵正比例函數圖象經過點Q(6,n),
∴n=-×6=-8,
∴點Q(6,-8),
∴P、Q兩點之間的距離==15.
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.
(1)求證:CF是⊙O的切線;
(2)若∠F=30°,EB=6,求圖中陰影部分的面積(結果保留根號和π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為( )
A. (﹣) B. (﹣) C. (﹣) D. (﹣)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知線段AB,P1是AB的黃金分割點(AP1>BP1),點O是AB的中點,P2是P1關于點O的對稱點.求證:P1B是P2B和P1P2的比例中項.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由兩個可以自由轉動的轉盤、每個轉盤被分成如圖所示的幾個扇形、游戲者同時轉動兩個轉盤,如果一個轉盤轉出了紅色,另一轉盤轉出了藍色,游戲者就配成了紫色下列說法正確的是( 。
A. 兩個轉盤轉出藍色的概率一樣大
B. 如果A轉盤轉出了藍色,那么B轉盤轉出藍色的可能性變小了
C. 先轉動A 轉盤再轉動B 轉盤和同時轉動兩個轉盤,游戲者配成紫色的概率不同
D. 游戲者配成紫色的概率為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A、B兩點的坐標分別為(2,0)、(0,2),⊙C的圓心坐標為(﹣1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于點E,則△ABE面積的最小值是( )
A. 2 B. 1 C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校獎勵給王偉和李麗上海世博園門票共兩張,其中一張為指定日門票,另一張為普通日門票。王偉和李麗分別轉動下圖的甲、乙兩個轉盤(轉盤甲被二等分、轉盤乙被三等分)確定指定日門票的歸屬,在兩個轉盤都停止轉動后,若指針所指的兩個數字之和為 偶數,則王偉獲得指定日門票;若指針所指的兩個數字之和為奇數,則李麗獲得指定日門票;若指針指向分隔線,則重新轉動。你認為這個方法公平嗎?請畫樹狀圖或列表,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人在5次打靶測試中命中的環(huán)數如下:
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填寫下表:
平均數 | 眾數 | 中位數 | 方差 | |
甲 | 8 | | 8 | 0.4 |
乙 | | 9 | | 3.2 |
(2)教練根據這5次成績,選擇甲參加射擊比賽,教練的理由是什么?
(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差 .(填“變大”、“變小”或“不變”).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com