【題目】如圖1,點(diǎn)為直線上一點(diǎn),過(guò)點(diǎn)作射線,使,將一把直角三角尺的直角頂點(diǎn)放在點(diǎn)處,一邊在射線上,另一邊在直線的下方,其中.

1)將圖1中的三角尺繞點(diǎn)順時(shí)針旋轉(zhuǎn)至圖2,使一邊的內(nèi)部,且恰好平分,求的度數(shù);

2)將圖1中三角尺繞點(diǎn)按每秒10的速度沿順時(shí)針方向旋轉(zhuǎn)一周,旋轉(zhuǎn)過(guò)程中,在第 秒時(shí),邊恰好與射線平行;在第 秒時(shí),直線恰好平分銳角.

3)將圖1中的三角尺繞點(diǎn)順時(shí)針旋轉(zhuǎn)至圖3,使的內(nèi)部,請(qǐng)?zhí)骄?/span>之間的數(shù)量關(guān)系,并說(shuō)明理由.

【答案】(1) 150°;(2) 927;624 ;(3)見解析.

【解析】

1)根據(jù)角平分線的定義求出∠COM,然后根據(jù)∠CON=COM+90°解答;(2)分別分兩種情況根據(jù)平行線的性質(zhì)和旋轉(zhuǎn)的性質(zhì)求出旋轉(zhuǎn)角,然后除以旋轉(zhuǎn)速度即可得解;

3)用∠BOM和∠NOC表示出∠BON,然后列出方程整理即可得解.

解:(1)∵OM平分∠AOC,
∴∠COM= AOC=60°,
∴∠CON=COM+90°=150°;

2))∵∠AOC=120°
∴∠BOC=60°,
∵∠OMN=30°,

∴當(dāng)ON在直線AB上時(shí),MNOC,
旋轉(zhuǎn)角為90°270°,
∵每秒順時(shí)針旋轉(zhuǎn)10°
∴時(shí)間為927,
直線ON恰好平分銳角∠BOC時(shí),
旋轉(zhuǎn)角為60° 180°+60°=240°,
∵每秒順時(shí)針旋轉(zhuǎn)10°,
∴時(shí)間為624;
故答案為:927;624

3)∵∠MON=90°,∠BOC=60°,
∴∠BON=90°-BOM
BON=60°-NOC,
90°-BOM=60°-NOC,
∴∠BOM-NOC=30°,
故∠BOM與∠NOC之間的數(shù)量關(guān)系為:∠BOM-NOC=30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)古代數(shù)學(xué)專著,在數(shù)學(xué)上有其獨(dú)到的成就,不僅最早提到了分?jǐn)?shù)問題,也首先記錄了“盈不足”等問題.如有一道闡述“盈不足”的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)、雞價(jià)各幾何?譯文為:現(xiàn)有若干人合伙出錢買雞,如果每人出9文錢,就會(huì)多11文錢;如果每人出6文錢,又會(huì)缺16文錢.問買雞的人數(shù)、雞的價(jià)格各是多少?請(qǐng)解答上述問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某體育用品商店老板到體育商場(chǎng)批發(fā)籃球、足球、排球共個(gè),得知該體育商場(chǎng)籃球、足球、排球平均每個(gè)元,籃球比排球每個(gè)多元,排球比足球每個(gè)少.

1 求出這三種球每個(gè)各多少元;

2 經(jīng)決定,該老板批發(fā)了三種球的任意兩種共個(gè),共花費(fèi)了1060元,問該老板可能買了哪兩種球?各買了幾個(gè);

3 該老板打算將每一種球各提價(jià)元后,再進(jìn)行打折銷售,若排球、足球打八折,籃球打八五折,在(2)的情況下,為獲得最大利潤(rùn),他批發(fā)的一定是哪兩種球?各買了幾個(gè)?計(jì)算并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問題)如圖①,點(diǎn)D是∠ABC的角平分線BP上一點(diǎn),連接AD,CD,若∠A與∠C互補(bǔ),則線段ADCD有什么數(shù)量關(guān)系?

(探究)

探究一:如圖②,若∠A90°,則∠C180°﹣∠A90°,即ADABCDBC,又因?yàn)?/span>BD平分∠ABC,所以ADCD,理由是:   

探究二:若∠A≠90°,請(qǐng)借助圖①,探究ADCD的數(shù)量關(guān)系并說(shuō)明理由.

[理論]點(diǎn)D是∠ABC的角平分線BP上一點(diǎn),連接ADCD,若∠A與∠C互補(bǔ),則線段ADCD的數(shù)量關(guān)系是   

[拓展]已知:如圖③,在ABC中,ABAC,∠A100°,BD平分∠ABC

求證:BCAD+BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,的平分線交于點(diǎn),交的延長(zhǎng)線于點(diǎn)

1)如圖1,若,則 (直接寫出結(jié)果) .

2)如圖2,若的點(diǎn),連接,求的值;

3)如圖3,若連接,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD內(nèi)接于⊙O,如圖所示,在劣弧上取一點(diǎn)E,連接DE、BE,過(guò)點(diǎn)D作DF∥BE交⊙O于點(diǎn)F,連接BF、AF,且AF與DE相交于點(diǎn)G,求證:

(1四邊形EBFD是矩形;

(2DG=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將下列各式配成完全平方式:

①x2+6x+______=(x+____2 ②x2-5x+_____=(x-____2

③x2+ x+______=(x+____2 ④x2-9x+_____=(x-____2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明每天上午9時(shí)騎自行車離開家,15時(shí)回家,他描繪了離家的距與時(shí)間的變化情況.

(1)圖象表示哪兩個(gè)變量的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?

(2)10時(shí)和13時(shí),他分別離家多遠(yuǎn)?

(3)他到達(dá)離家最遠(yuǎn)的地方時(shí)什么時(shí)間?離家多遠(yuǎn)?

(4)11時(shí)到12時(shí)他行駛了多少千米?

(5)他由離家最遠(yuǎn)的地方返回的平均速度是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一條筆直的公路上有A、BC三地,C地位于AB兩地之間,甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲車出發(fā)至甲車到達(dá)C地的過(guò)程中,甲、乙兩車各自與C地的距離ykm)與甲車行駛時(shí)間th)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車出發(fā)2h時(shí),兩車相遇;②乙車出發(fā)1.5h時(shí),兩車相距170km;③乙車出發(fā)h時(shí),兩車相遇;④甲車到達(dá)C地時(shí),兩車相距40km.其中正確的是______(填寫所有正確結(jié)論的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案