【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=CD=8,過點B作EB⊥AB,交CD于點E.若DE=6,則AD的長為___________.
【答案】10
【解析】
作BF⊥AD與F,就可以得出四邊形BCDF是矩形,進而得出四邊形BCDF是正方形,就有BC=BF=FD,證明△BCE≌△BFA就可以得出AF=CE,進而得出結論.
解:作BF⊥AD與F,
∴∠AFB=BFD=90°,
∵AD∥BC,
∴∠FBC=∠AFB=90°,
∵∠C=90°,
∴∠C=∠AFB=∠BFD=∠FBC=90°.
∴四邊形BCDF是矩形.
∵BC=CD,
∴四邊形BCDF是正方形,
∴BC=BF=FD.
∵EB⊥AB,
∴∠ABE=90°,
∴∠ABE=∠FBC,
∴∠ABE-∠FBE=∠FBC-∠FBE,
∴∠CBE=∠FBA.
在△BCE和△BFA中
∴△BCE≌△BFA(ASA),
∴CE=FA.
∵CD=BC=8,DE=6,
∴DF=8,CE=2,
∴FA=2,
∴AD=8+2=10.
故答案為10.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知中,,,動點在的延長線上運動,動點在的
延長線上運動,且保持的值為.設,.
求與之間的函數(shù)關系式;
用描點法畫出中函數(shù)的圖象;
已知直線與中函數(shù)圖象的交點坐標是,求的值;
求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點A是函數(shù)y=﹣(x<0)圖象上的一點,連結AO并延長交函數(shù)y=﹣(x>0)的圖象于點B,點C是x軸上一點,且AC=AO,則△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=6cm,BC=3cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,如果P、Q兩點同時出發(fā)。
(1)幾秒鐘后,P、Q間的距離等于4cm?
(2)幾秒種后,△BPQ的面積與四邊形CQPA的面積相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠MON=30°,點A1,A2,A3,…在射線ON上,點B1,B2,B3…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形.若OA1=1,則△A6B6A7的邊長為( )
A.32B.24C.16D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當∠B=140°時,求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 XOY中,對于任意兩點 (,)與 (,)的“非常距離”,給出如下定義: 若 ,則點 與點 的“非常距離”為 ;若 ,則點 與點的“非常距離”為 .
例如:點 (1,2),點 (3,5),因為 ,所以點 與點 的“非常距離”為 ,也就是圖1中線段 Q與線段 Q長度的較大值(點 Q為垂直于 y軸的直線 Q與垂直于 x軸的直線 Q的交點)。
(1)已知點 A(-,0), B為 y軸上的一個動點,①若點 A與點 B的“非常距離”為2,寫出一個滿足條件的點 B的坐標;②直接寫出點 A與點 B的“非常距離”的最小值;
(2)已知 C是直線 上的一個動點,①如圖2,點 D的坐標是(0,1),求點 C與點 D的“非常距離”的最小值及相應的點 C的坐標; ②如圖3, E是以原點 O為圓心,1為半徑的圓上的一個動點,求點 C與點 E的“非常距離”的最小值及相應的點 E和點 C的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標平面內,已點A(3,0)、B(-5,3),將點A向左平移6個單位到達C點,將點B向下平移6個單位到達D點.
(1)寫出C點、D點的坐標:C __________,D ____________ ;
(2)把這些點按A-B-C-D-A順次連接起來,這個圖形的面積是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l的解析式為y=x﹣1,拋物線y=ax2+bx+2經(jīng)過點A(m,0),B(2,0),D(1,)三點.
(1)求拋物線的解析式及A點的坐標,并在圖示坐標系中畫出拋物線的大致圖象;
(2)已知點 P(x,y)為拋物線在第二象限部分上的一個動點,過點P作PE垂直x軸于點E,延長PE與直線l交于點F,請你將四邊形PAFB的面積S表示為點P的橫坐標x的函數(shù),并求出S的最大值及S最大時點P的坐標;
(3)將(2)中S最大時的點P與點B相連,求證:直線l上的任意一點關于x軸的對稱點一定在PB所在直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com