【題目】已知反比例函數(shù)的圖象過(guò)點(diǎn)A(3,2).
(1)試求該反比例函數(shù)的表達(dá)式;
(2)M(m,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<m<3,過(guò)點(diǎn)M作直線MB∥x軸,交y軸于點(diǎn)B;過(guò)點(diǎn)A作直線AC∥y軸,交x軸于點(diǎn)C,交直線MB于點(diǎn)D.當(dāng)四邊形OADM的面積為6時(shí),請(qǐng)判斷線段BM與DM的大小關(guān)系,并說(shuō)明理由.
【答案】(1);(2)MB=MD.
【解析】
(1)將A(3,2)分別代入y=,y=ax中,得a、k的值,進(jìn)而可得正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)有S△OMB=S△OAC=×=3,可得矩形OBDC的面積為12;即OC×OB=12;進(jìn)而可得m、n的值,故可得BM與DM的大;比較可得其大小關(guān)系.
(1)將A(3,2)代入中,得2,∴k=6,
∴反比例函數(shù)的表達(dá)式為.
(2)BM=DM,理由:∵S△OMB=S△OAC=×=3,
∴S矩形OBDC=S四邊形OADM+S△OMB+S△OAC=3+3+6=12,
即OC·OB=12,
∵OC=3,∴OB=4,即n=4,∴,
∴MB=,MD=,∴MB=MD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(8,0).
(1)當(dāng)α=60°時(shí),△CBD的形狀是______;
(2)設(shè)AH=m
①連接HD,當(dāng)△CHD的面積等于10時(shí),求m的值;
②當(dāng)0°<α<90°旋轉(zhuǎn)過(guò)程中,連接OH,當(dāng)△OHC為等腰三角形時(shí),請(qǐng)直接寫(xiě)出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)E,連接OE、AE,過(guò)點(diǎn)E作⊙O的切線交邊BC于F.
(1)求證:△ODE∽△ECF;
(2)在點(diǎn)O的運(yùn)動(dòng)過(guò)程中,設(shè)DE= :
①求的最大值,并求此時(shí)⊙O的半徑長(zhǎng);
②判斷△CEF的周長(zhǎng)是否為定值,若是,求出△CEF的周長(zhǎng);否則,請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面內(nèi),有相互平行的三條直線a,b,c,且a,b之間的距離為1,b,c之間的距離是2,若等腰Rt△ABC的三個(gè)頂點(diǎn)恰好各在這三條平行直線上,如圖所示,則△ABC的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(知識(shí)背景)我國(guó)古代把直角三角形較短的直角邊稱(chēng)為“勾”,較長(zhǎng)的的直角邊稱(chēng)為“股”,斜邊稱(chēng)為“弦”.據(jù)《周髀算經(jīng)》記載,公元前1000多年就發(fā)現(xiàn)了“勾三股四弦五”的結(jié)論.像3、4、5這樣為三邊長(zhǎng)能構(gòu)成直角三角形的3個(gè)正整數(shù),稱(chēng)為勾股數(shù).
(應(yīng)用舉例)
觀察3,4,5;5,12,13;7,24,25;
可以發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒(méi)有間斷過(guò),
當(dāng)勾為3時(shí),股,弦;
當(dāng)勾為5時(shí),股,弦;
當(dāng)勾為7時(shí),股,弦.
請(qǐng)仿照上面三組樣例,用發(fā)現(xiàn)的規(guī)律填空:
(1)如果勾用,且為奇數(shù))表示時(shí),請(qǐng)用含有的式子表示股和弦,則股 ,弦 .
(問(wèn)題解決)
(2)古希臘的哲學(xué)家柏拉圖也提出了構(gòu)造勾股數(shù)組的公式.具體表述如下:如果,,為大于1的整數(shù)),則、、為勾股數(shù).請(qǐng)你證明柏拉圖公式的正確性;
(3)畢達(dá)哥拉斯在他找到的勾股數(shù)的表達(dá)式中發(fā)現(xiàn)弦與股的差為1,若用為任意正整數(shù))表示勾股數(shù)中最大的一個(gè)數(shù),請(qǐng)你找出另外兩個(gè)數(shù)的表達(dá)式分別是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE交AE延長(zhǎng)線于D,DF⊥AC交AC的延長(zhǎng)線于F,連接CD,給出四個(gè)結(jié)論:① ∠FDC=22.5°; ② 2BD=AE;③ AC+CE=AB; ④ AB-BC=2FC.其中正確的結(jié)論有( ) 個(gè)
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=∠C,點(diǎn)D在AC上,點(diǎn)E在BC上,AD=CE,BC=DC
(1)求證:DB=DE;
(2)如圖2,若∠ABC=90°,求∠BED的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
關(guān)于x的方程:x+=c+的解為x1=c,x2=;x﹣=c﹣(可變形為x+=c+)的解為x1=c,x2=;x+=c+的解為x1=c,x2= Zx+=c+的解為x1=c,x2=Z.
(1)歸納結(jié)論:根據(jù)上述方程與解的特征,得到關(guān)于x的方程x+=c+(m≠0)的解為 .
(2)應(yīng)用結(jié)論:解關(guān)于y的方程y﹣a=﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出t的值,如果不能,說(shuō)明理由;
(3)在運(yùn)動(dòng)過(guò)程中,四邊形BEDF能否為正方形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com