【題目】在 中,點(diǎn)為邊上一點(diǎn),點(diǎn)為中點(diǎn),連接,交于點(diǎn),且;
(1)如圖1,若,,求的值;
(2)如圖2,若平分,且,過點(diǎn)作交于點(diǎn)且,求證:.
【答案】(1) (2)證明見解析
【解析】
(1)過點(diǎn)作于點(diǎn),根據(jù)平行四邊形的性質(zhì)得到,進(jìn)而證明為等腰直角三角形,根據(jù)勾股定理即可求出的長度,進(jìn)而求出
根據(jù)即可求解.
(2)延長交于點(diǎn),證明△ △,得到,證明△ △,得到,求出,即可證明.
(1)解:過點(diǎn)作于點(diǎn)
在中,
,
,
為等腰直角三角形
則,,
,
,
在中,,,
由勾股定理得:.
(2)證明:延長交于點(diǎn)
在中,,則
為中點(diǎn)
在△與△中
△ △
則
平分,且
,
,
,
在△中,,
,
則,
且,
,
,
在△與△中
△ △
,
,
,
即
方法2:可證明四點(diǎn)共圓
方法3: 可求出,利用計(jì)算方法求出
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設(shè)其出水口為原點(diǎn),出水口離岸邊18m,音樂變化時(shí),拋物線的頂點(diǎn)在直線y=kx上變動,從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.
(1)若已知k=1,且噴出的拋物線水線最大高度達(dá)3m,求此時(shí)a、b的值;
(2)若k=1,噴出的水恰好達(dá)到岸邊,則此時(shí)噴出的拋物線水線最大高度是多少米?
(3)若k=3,a=﹣,則噴出的拋物線水線能否達(dá)到岸邊?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+2與坐標(biāo)軸相交于A,B兩點(diǎn),與反比例函數(shù)y=在第一象限交點(diǎn)C(1,a).求:
(1)反比例函數(shù)的解析式;
(2)△AOC的面積;
(3)不等式x+2﹣<0的解集(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,﹣2).
(1)分別求出這兩個(gè)函數(shù)的關(guān)系式;
(2)觀察圖象,直接寫出關(guān)于x的不等式﹣ax﹣b>0的解集;
(3)如果點(diǎn)C與點(diǎn)A關(guān)于x軸對稱,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B是反比例函數(shù)y=(k≠0)圖象上的兩點(diǎn),延長線段AB交y 軸于點(diǎn)C,且點(diǎn)B為線段AC中點(diǎn),過點(diǎn)A作AD⊥x軸子點(diǎn)D,點(diǎn)E 為線段OD的三等分點(diǎn),且OE<DE.連接AE、BE,若S△ABE=7,則k的值為( )
A. ﹣12 B. ﹣10 C. ﹣9 D. ﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD與x軸平行,A、B兩點(diǎn)的橫坐標(biāo)分別為1和3,反比例函數(shù)y=的圖象經(jīng)過A、B兩點(diǎn),則菱形ABCD的面積是_____;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在矩形ABCD中,AB=2,BC=6,點(diǎn)E從點(diǎn)D出發(fā),沿DA方向以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動,點(diǎn)F從點(diǎn)B出發(fā),沿射線AB以每秒3個(gè)單位的速度運(yùn)動,當(dāng)點(diǎn)E運(yùn)動到點(diǎn)A時(shí),E、F兩點(diǎn)停止運(yùn)動.連結(jié)BD,過點(diǎn)E作EH⊥BD,垂足為H,連結(jié)EF,交BD于點(diǎn)G,交BC于點(diǎn)M,連結(jié)CF.
(1)△CDE與△CBF相似嗎?為什么?
(2)求證:∠DBC=∠EFC;
(3)同線段GH的值是定值嗎?如果不是,請說明理由;如果是,求出這個(gè)定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.
(1)請你在圖中畫出旗桿在同一時(shí)刻陽光照射下形成的影子,并用線段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一條河的北岸有兩個(gè)目標(biāo)M、N,現(xiàn)在位于它的對岸設(shè)定兩個(gè)觀測點(diǎn)A、B.已知AB∥MN,在A點(diǎn)測得∠MAB=60°,在B點(diǎn)測得∠MBA=45°,AB=600米.
(1)求點(diǎn)M到AB的距離;(結(jié)果保留根號)
(2)在B點(diǎn)又測得∠NBA=53°,求MN的長.(結(jié)果精確到1米)
(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com