【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE是中線,CG平分∠ACB交BE于點G,F(xiàn)為AB邊上一點,且∠ACF=∠CBG.
(1)求證:CF=BG;
(2)延長CG交AB于點H,判斷點G是否在線段AB的垂直平分線上?并說明理由.
(3)過點A作AD⊥AB交BE的延長線于點D,請證明:CF=2DE.
【答案】
(1)證明:∵∠ACB=90°,AC=BC,
∴∠A=∠ABC=45°,
∵CG平分∠ACB,
∴∠BCG=45°=∠A,
∴∠BCG=∠CAB=45°,
在△ACF和△BCG中, ,
∴△ACF≌△BCG(ASA),
∴AF=CG,CF=BG
(2)解:點G在線段AB的垂直平分線上,如圖1所示:理由如下:
∵AC=BC,CG平分∠ACB,
∴CH⊥AB,H為AB中點,
∴點G在線段AB的垂直平分線上
(3)證明:連接AG.如圖2所示:
由(2)可知,AG=BG,∠GAB=∠GBA,
∵AD⊥AB,
∴∠GAB+∠GAD=∠GBA+∠D=90°,
∴∠GAD=∠D,
∴GA=GD=GB=CF.
∵AD⊥AB,CH⊥AB
∴CH∥AD,
∴∠D=∠EGC,
∵E為AC中點,
∴AE=EC,
在△AED和△CEG中, ,
∴△AED≌△CEG(SAS),
∴DE=EG,
∴DG=2DE,
∴CF=2DE
【解析】 (1)根據(jù)等腰直角三角形的性質及角平分線的定義得出∠BCG=∠CAB=45°,然后由ASA判斷出△ACF≌△BCG,然后根據(jù)全等三角形的性質得出結論;
(2)根據(jù)等腰三角形的三線合一得出CH⊥AB,H為AB中點,故點G在線段AB的垂直平分線上;
(3)連接AG,由垂直的定義得出∠GAD=∠D, 根據(jù)等邊對等角得出GA=GD=GB=CF,由平行線的判定得出CH∥AD,故∠D=∠EGC,然后由SAS得出△AED≌△CEG,根據(jù)全等三角形的性質得出結論。
【考點精析】根據(jù)題目的已知條件,利用平行線的判定與性質和等腰三角形的性質的相關知識可以得到問題的答案,需要掌握由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結論是平行線的性質;等腰三角形的兩個底角相等(簡稱:等邊對等角).
科目:初中數(shù)學 來源: 題型:
【題目】取一張矩形紙片進行折疊,具體操作過程如下:第一步:先把矩形ABCD對折,折痕為MN,如圖1;第二步:再把B點疊在折痕線MN上,折痕為AE,點B在MN上的對應點為B',得Rt△AB'E,如圖2;第三步:沿EB'線折疊得折痕EF,使A點落在EC的延長線上,如圖3.
利用展開圖4探究:
(1)△AEF是什么三角形?證明你的結論;
(2)對于任一矩形,按照上述方法是否都能折出這種三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+mx+n的圖象經(jīng)過點A(2,3),對稱軸為直線x=1,一次函數(shù)y=kx+b的圖象經(jīng)過點A,交x軸于點P,交拋物線于另一點B,點A、B位于點P的同側.
(1)求拋物線的解析式;
(2)若PA:PB=3:1,求一次函數(shù)的解析式;
(3)在(2)的條件下,當k>0時,拋物線的對稱軸上是否存在點C,使得⊙C同時與x軸和直線AP都相切,如果存在,請求出點C的坐標,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋中裝有20個球,其中7個黃球,8個黑球,5個紅球,這些球只有顏色不同,其它都相同.
(1)求從袋中摸出一個球是黃球的概率;
(2)現(xiàn)從袋中取出若干個黑球,攪勻后,使從袋中摸出一個球是黑球的概率是 ,求從袋中取出黑球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市2011年5月1日﹣10日十天的空氣污染指數(shù)的數(shù)據(jù)如下(主要污染物為可吸入顆粒物):61,75,70,56,81,91,92,91,75,81.那么該組數(shù)據(jù)的極差和中位數(shù)分別是( )
A. 36,78 B. 36,86 C. 20,78 D. 20,77.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD為AB邊上的高,若點A關于CD所在直線的對稱點E恰好為AB的中點,則∠B的度數(shù)是( )
A.60°
B.45°
C.30°
D.75°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列現(xiàn)象:①電梯的升降運動;②飛機在地面上沿直線滑行;③風車的轉動;④鐘擺的擺動.其中屬于平移的是( )
A. ①③B. ①②C. ②③D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】政府為了更好地加強城市建設,就社會熱點問題廣泛征求市民意見,調(diào)查方式是發(fā)調(diào)查表,要求每位被調(diào)查人員只寫一個你最關心的有關城市建設的問題,經(jīng)統(tǒng)計整理,發(fā)現(xiàn)對環(huán)境保護問題提出的最多,有700人,同時作出相應的條形統(tǒng)計圖,如圖所示,請回答下列問題.
(1)共收回調(diào)查表 張;
(2)提道路交通問題的有 人;
(3)請你把這個條形統(tǒng)計圖用扇形統(tǒng)計圖表示出來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com