【題目】《雁棲塔》位于懷柔“北京雁棲湖國際會都中心”所處大島西南部突出部位的半島上,是“北京雁棲湖國際會都中心”的標(biāo)志性建筑,也是整個雁棲湖風(fēng)景區(qū)的標(biāo)志性建筑. 某校數(shù)學(xué)課外小組為了測量《雁棲塔》(底部可到達(dá))的高度,準(zhǔn)備了如下的測量工具:①平面鏡,②皮尺,③長為1米的標(biāo)桿,④高為1.5m的測角儀(測量仰角、俯角的儀器).第一組選擇用②④做測量工具;第二組選用②③做測量工具;第三組利用自身的高度并選用①②做測量工具,分別畫出如下三種測量方案示意圖.
(1)請你判斷如下測量方案示意圖各是哪個小組的,在測量方案示意圖下方的括號內(nèi)填上小組名稱.
(2)選擇其中一個測量方案示意圖,寫出求《雁棲塔》高度的思路.
【答案】
(1)解:二組 一組 三組
(2)解:一圖思路:①分別測出在同一時刻標(biāo)桿EF和《雁棲塔》AB的影長DF,CB;
②由△ABC∽△EFD,利用 求出AB的值,
二圖思路:①用測角儀測出∠ACB的角度; ②用皮尺測量CB的長;
③AB=CBtan∠ACB; ④AE=AB+1.5,
三圖思路:①用皮尺分別測量DF、CF、CB的長;
②由△ABC∽△DFE,利用 求出AB的值
【解析】(1)根據(jù)題意即可得到結(jié)論;(2)一圖思路:分別測出在同一時刻標(biāo)桿EF和《雁棲塔》AB的影長DF,CB;根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;二圖思路:用測角儀測出∠ACB的角度; 用皮尺測量CB的長;解直角三角形即可得到快樂;三圖思路:用皮尺分別測量DF、CF、CB的長;根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
【考點(diǎn)精析】關(guān)于本題考查的相似三角形的應(yīng)用和關(guān)于仰角俯角問題,需要了解測高:測量不能到達(dá)頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解;仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,E,F(xiàn)分別為BC,CD上的點(diǎn),且BD∥平面AEF.
(1)求證:EF∥平ABD面;
(2)若AE⊥平面BCD,BD⊥CD,求證:平面AEF⊥平面ACD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=11.直角尺的直角頂點(diǎn)P在AD上滑動時(點(diǎn)P與A,D不重合),一直角邊始終經(jīng)過點(diǎn)C,另一直角邊與AB交于點(diǎn)E. 請問:△CDP與△PAE相似嗎?如果相似,請寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)D、E分別是AB、AC的中點(diǎn),則下列結(jié)論:①BC=2DE;②△ADE∽△ABC;③ .其中正確的有( )
A.3個
B.2個
C.1個
D.0個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在1~7月份,某地的蔬菜批發(fā)市場指導(dǎo)菜農(nóng)生產(chǎn)和銷售某種蔬菜,并向他們提供了這種蔬菜每千克售價與每千克成本的信息如圖所示,則出售該種蔬菜每千克利潤最大的月份可能是( )
A.1月份
B.2月份
C.5月份
D.7月份
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,E為BC邊上一點(diǎn),G為BC延長線上一點(diǎn),過點(diǎn)E作∠AEM=60°,交∠ACG的平分線于點(diǎn)M.
(1)如圖(1),當(dāng)點(diǎn)E在BC邊的中點(diǎn)位置時,通過測量AE,EM的長度,猜想AE與EM滿足的數(shù)量關(guān)系是;
(2)如圖(2),小晏通過觀察、實(shí)驗(yàn),提出猜想:當(dāng)點(diǎn)E在BC邊的任意位置時,始終有AE=EM.小晏把這個猜想與同學(xué)進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:在BA上取一點(diǎn)H使AH=CE,連接EH,要證AE=EM,只需證△AHE≌△ECM.
想法2:找點(diǎn)A關(guān)于直線BC的對稱點(diǎn)F,連接AF,CF,EF.(易證∠BCF+∠BCA+ACM=180°,所以M,C,F(xiàn)三點(diǎn)在同一直線上)要證AE=EM,只需證△MEF為等腰三角形.
想法3:將線段BE繞點(diǎn)B順時針旋轉(zhuǎn)60°,得到線段BF,連接CF,EF,要證AE=EM,只需證四邊形MCFE為平行四邊形.
請你參考上面的想法,幫助小晏證明AE=EM.(一種方法即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若P是y軸上一點(diǎn),且滿足△PAB的面積是5,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的南偏東60°方向,距離燈塔40海里的A處,它計(jì)劃沿正北方向航行,去往位于燈塔P的北偏東45°方向上的B處.問B處距離燈塔P有多遠(yuǎn)?(結(jié)果精確到0.1海里) (參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.449)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論: ①4a+b=0;
②9a+c<3b;
③25a+5b+c=0;
④當(dāng)x>2時,y隨x的增大而減小.
其中正確的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com