【題目】閱讀下面材料:
如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).
觀察圖象可知:
①當(dāng)x=﹣3或1時(shí),y1=y2;
②當(dāng)﹣3<x<0或x>1時(shí),y1>y2 , 即通過(guò)觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個(gè)問(wèn)題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識(shí)的經(jīng)驗(yàn),對(duì)求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.

下面是他的探究過(guò)程,請(qǐng)將(2)、(3)、(4)補(bǔ)充完整:
(1)將不等式按條件進(jìn)行轉(zhuǎn)化:
(2)構(gòu)造函數(shù),畫出圖象
設(shè)y3=x2+4x﹣1,y4= ,在同一坐標(biāo)系中分別畫出這兩個(gè)函數(shù)的圖象.
雙曲線y4= 如圖2所示,請(qǐng)?jiān)诖俗鴺?biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(3)確定兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo),觀察所畫兩個(gè)函數(shù)的圖象,猜想并通過(guò)代入函數(shù)解析式驗(yàn)證可知:滿足y3=y4的所有x的值為
(4)借助圖象,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個(gè)函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集

【答案】
(1)解:當(dāng)x=0時(shí),原不等式不成立;

當(dāng)x>0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1> ;

當(dāng)x<0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1< ;


(2)解:


(3)±1和﹣4
(4)x>1或﹣4<x<﹣1
【解析】解:(2)
;(3)兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo)是±1和﹣4.
則滿足y3=y4的所有x的值為±1和﹣4.
故答案是:±1和﹣4;(4)不等式x3+4x2﹣x﹣4>0即當(dāng)x>0時(shí),x2+4x﹣1> ,此時(shí)x的范圍是:x>1;
當(dāng)x<0時(shí),x2+4x﹣1< ,則﹣4<x<﹣1.
故答案是:x>1或﹣4<x<﹣1.
(2)首先確定二次函數(shù)的對(duì)稱軸,然后確定兩個(gè)點(diǎn)即可作出二次函數(shù)的圖象;(3)根據(jù)圖象即可直接求解;(4)根據(jù)已知不等式x3+4x2﹣x﹣4>0即當(dāng)x>0時(shí),x2+4x﹣1> ,;當(dāng)x<0時(shí),x2+4x﹣1< ,根據(jù)圖象即可直接寫出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)F為弦AC的中點(diǎn),連接OF并延長(zhǎng)交⊙O于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交BA的延長(zhǎng)線于點(diǎn)E.

(1)求證:AC∥DE;
(2)若OA=AE=4,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的是一個(gè)長(zhǎng),寬,高的長(zhǎng)方體,現(xiàn)在把它等分為個(gè)棱長(zhǎng)為的小正方體

說(shuō)明你的分法;

把這個(gè)小正方體排成一排組成一個(gè)新長(zhǎng)方體,這個(gè)新長(zhǎng)方體與原長(zhǎng)方體相比.表面積怎樣變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中,EAD上一點(diǎn),AE=AB,過(guò)點(diǎn)E作直線EF,在EF上取一點(diǎn)G,使得∠EGB=EAB,連接AG

1)如圖①,當(dāng)EFAB相交時(shí),若∠EAB=60°,求證:EG=AG+BG;

2)如圖②,當(dāng)EFCD相交時(shí),且∠EAB=90°,請(qǐng)你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB:y=5x﹣5與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)C與點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱,拋物線y=ax2+bx+c的對(duì)稱軸為直線x=3且過(guò)點(diǎn)A和C.

(1)求點(diǎn)A和點(diǎn)C的坐標(biāo);
(2)求拋物線y=ax2+bx+c的解析式;
(3)若拋物線y=ax2+bx+c的頂點(diǎn)為D,且在x軸上存在點(diǎn)P使得△DAP的面積為6,直接寫出滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們規(guī)定:平面內(nèi)點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最小值稱為該點(diǎn)到這個(gè)圖形的最小距離d,點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最大值稱為該點(diǎn)到這個(gè)圖形的最大距離D,定義點(diǎn)A到圖形G的距離跨度為R=D﹣d.
(1)①如圖1,在平面直角坐標(biāo)系xOy中,圖形G1為以O(shè)為圓心,2為半徑的圓,直接寫出以下各點(diǎn)到圖形G1的距離跨度:
A(﹣1,0)的距離跨度;
B( ,﹣ )的距離跨度;
C(﹣3,2)的距離跨度;
②根據(jù)①中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是

(2)如圖2,在平面直角坐標(biāo)系xOy中,圖形G2為以C(1,0)為圓心,2為半徑的圓,直線y=k(x+1)上存在到G2的距離跨度為2的點(diǎn),求k的取值范圍.

(3)如圖3,在平面直角坐標(biāo)系xOy中,射線OA:y= x(x≥0),圓C是以3為半徑的圓,且圓心C在x軸上運(yùn)動(dòng),若射線OA上存在點(diǎn)到圓C的距離跨度為2,直接寫出圓心C的橫坐標(biāo)xc的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為﹣20,B點(diǎn)對(duì)應(yīng)的數(shù)為100.

(1)請(qǐng)寫出與A,B兩點(diǎn)距離相等的點(diǎn)M所對(duì)應(yīng)的數(shù)   

(2)現(xiàn)有一只電子螞蟻PB點(diǎn)出發(fā),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度向右運(yùn)動(dòng),x秒后兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,請(qǐng)列方程求出x,并指出點(diǎn)C表示的數(shù).

(3)若當(dāng)電子螞蟻PB點(diǎn)出發(fā)時(shí),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度也向左運(yùn)動(dòng),y秒后兩只電子螞蟻在數(shù)軸上的D點(diǎn)相遇,請(qǐng)列方程求出y并指出點(diǎn)D表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校剛完成一批結(jié)構(gòu)相同的學(xué)生宿舍的修建,這些宿舍地板需要鋪瓷磚,一天4名一級(jí)技工去鋪4個(gè)宿舍,結(jié)果還剩12 m2地面未鋪瓷磚;同樣時(shí)間內(nèi)6名二級(jí)技工鋪4個(gè)宿舍剛好完成,已知每名一級(jí)技工比二級(jí)技工一天多鋪3 m2瓷磚.

(1)求每個(gè)宿舍需要鋪瓷磚的地板面積.

(2)現(xiàn)該學(xué)校有20個(gè)宿舍的地板和36 m2的走廊需要鋪瓷磚,某工程隊(duì)有4名一級(jí)技工和6名二級(jí)技工,一開始有4名一級(jí)技工來(lái)鋪瓷磚,3天后,學(xué)校根據(jù)實(shí)際情況要求2天后必須完成剩余的任務(wù),所以決定加入一批二級(jí)技工一起工作,問(wèn)需要再安排多少名二級(jí)技工才能按時(shí)完成任務(wù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案