【題目】某校興趣小組想測量一座大樓AB的高度.如圖,大樓前有一段斜坡BC,已知BC的長為12米,它的坡度i=1: .在離C點40米的D處,用測角儀測得大樓頂端A的仰角為37°,測角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結果精確到0.1米)
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.73.)

【答案】解:.

∵在Rt△BCF中, =i=1: ,

∴設BF=k,則CF= ,BC=2k.

又∵BC=12,

∴k=6,

∴BF=6,CF=

∵DF=DC+CF,

∴DF=40+6

∵在Rt△AEH中,tan∠AEH= ,

∴AH=tan37°×(40+6 )≈37.785(米),

∵BH=BF﹣FH,

∴BH=6﹣1.5=4.5.

∵AB=AH﹣HB,

∴AB=37.785﹣4.5≈33.3.

答:大樓AB的高度約為33.3米.


【解析】根據(jù)已知條件,添加輔助線,延長AB交直線DC于點F,過點E作EH⊥AF,垂足為點H,由BC得坡度和BC得長,求出BF,CF的長,即可求得DF的長,再在在Rt△AEH中,根據(jù)解直角三角形,求得AH、BH的長,從而可求得大樓AB的高度。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列資料,并解決問題.

地球上的水包括大氣水、地表水和地下水三大類,地表水可以分為海洋水和陸地水,陸地水又可分為冰川、河流、湖泊等。地球上的水總體積是14.2,其中,海洋水約占96.53%以上,淡水約占2.53%,而在淡水中,大部分在兩極的冰川、冰蓋和地下水的形式存在,其中冰川、冰蓋占77.2%,地下水占22.4%,而人類可以利用的水還不到1%.

我國是世界上嚴重缺水的國家之一,年水資源總量居世界第六位,人均占有水量僅為左右,只相當于世界人均的,居世界第110位,中國已被聯(lián)合國列為13個貧水國之一.

1是我國2006年至2015年水資源總量變動趨勢圖,全國用水量由農(nóng)業(yè)用水、工業(yè)用水、生活用水和生態(tài)補水四部分組成,表12015年我國四類用水量統(tǒng)計表.

1 2015年四類用水統(tǒng)計表

用水類別

用水量(億立方米)

所占百分比

農(nóng)業(yè)用水

3903.9

63.17%

工業(yè)用水

1380.6

22.34%

生活用水

790.5

12.79%

生態(tài)補水

105.0

1.70%

解決問題:

(1)根據(jù)國外的經(jīng)驗,一個國家的用水量超過其水資源總量20%,就有可能發(fā)生水危機”.依據(jù)這個標準,請你計算2015年我國是否屬于可能發(fā)生水危機行列?

(2)第四十七屆聯(lián)合國大會作出決議,確定每年322日為世界水日”.我國水利部確定每年的322日至28日是中國水周”.我國紀念世界水日中國水周宣傳活動的主題是實施國家節(jié)水行動,建設節(jié)水型社會”.小亮作為學校的節(jié)水行動宣傳志愿者,對他所在學校部分學生進行了節(jié)水在行動的隨機調(diào)查,表2是問卷調(diào)查表,并將調(diào)查結果繪制成圖2和圖3所示的統(tǒng)計圖(均不完整),請根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

①參與本次調(diào)查的學生人數(shù)有________(直接寫出答案);

②補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,觀點的百分比是_______(直接寫出答案);

2:節(jié)水問卷調(diào)查表

你好,請在表格中選擇一項你對節(jié)水的認識,在其后面打“√”,非常感謝你的合作.

代碼

觀點

A

水費低,不需要節(jié)水

B

節(jié)水意識薄弱,認為水資源充足

C

缺乏社會責任意識,節(jié)水與我無關

D

知道節(jié)水的重要性,并有節(jié)水的好習慣

③若該學校共有800名學生,請估計其中知道節(jié)水的重要性,并有節(jié)水的好習慣的有多少人?

④談一談你對節(jié)約用水的看法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1

2;

3;

4)先化簡,再求值:(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段AB=10cm,在直線AB上取一點C,使AC=16cm,則線段AB的中點與AC的中點的距離為( )

A.13cm26cmB.6cm13cmC.6cm25cmD.3cm13cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小紅用一張長方形紙片ABCD進行折紙,已知該紙片寬AB8cmBC10cm.當小紅折疊時,頂點D落在BC邊上的點F處(折痕為AE).想一想,此時EC有多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠ACD=90°,AC=DC,MN是過點A的直線,過點D作DB⊥MN于點B,連接CB.

(1)問題發(fā)現(xiàn)
如圖(1),過點C作CE⊥CB,與MN交于點E,則易發(fā)現(xiàn)BD和EA之間的數(shù)量關系為 , BD、AB、CB之間的數(shù)量關系為
(2)拓展探究
當MN繞點A旋轉到如圖(2)位置時,BD、AB、CB之間滿足怎樣的數(shù)量關系?請寫出你的猜想,并給予證明.

(3)解決問題
當MN繞點A旋轉到如圖(3)位置時(點C、D在直線MN兩側),若此時∠BCD=30°,BD=2時,CB=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線a∥b,直線l與a、b分別相交于A,B兩點,過點A作直線l的垂線交直線b于點C,若∠1=58°,則∠2的度數(shù)為( )

A.58°
B.42°
C.32°
D.28°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正六邊形ABCDEF中,點P是其對角線BE上一動點,連接PC、PD,則△PCD的周長的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是AD,CD的中點,沿著BE將△ABE折疊,點A剛好落在BF上,若AB=2,則AD=

查看答案和解析>>

同步練習冊答案