【題目】填寫下面證明過程中的推理依據(jù):
已知:如圖,AB∥CD,BE平分∠ABC,CF平分∠BCD.求證:∠1=∠2
證明:∵AB∥CD (__________)
∴∠ABC=∠BCD(__________)
∵BE平分∠ABC,CF平分∠BCD (__________)
∴∠1=∠ ______ ,(__________)
∠2=∠ ______ .(__________)
∴∠1=∠2.(__________)
【答案】已知;兩直線平行,內(nèi)錯角相等;已知;ABC;角平分線的定義;BCD;角平分線的定義;等量代換.
【解析】試題分析:先根據(jù)平行線的性質(zhì),得出∠ABC=∠BCD,再根據(jù)角平分線的定義,即可得出∠1=∠2.
試題解析:證明:∵AB∥CD(已知)
∴∠ABC=∠BCD(兩直線平行,內(nèi)錯角相等)
∵BE平分∠ABC,CF平分∠BCD(已知)
∴∠1=∠ABC,(角平分線的定義)
∠2=∠BCD.(角平分線的定義)
∴∠1=∠2.(等量代換)
故答案為:已知;兩直線平行,內(nèi)錯角相等;已知;ABC;角平分線的定義;BCD;角平分線的定義;等量代換
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點M、N在數(shù)軸上分別表示實數(shù)m,n,在數(shù)軸上M,N兩點之間的距離表示為MN=m-n(m>n)或n-m(m<n)或︱m-n︱.利用數(shù)形結(jié)合思想解決下列問題:
已知數(shù)軸上點A與點B的距離為16個單位長度,點A在原點的左側(cè),到原點的距離為26個單位長度,點B在點A的右側(cè),點C表示的數(shù)與點B表示的數(shù)互為相反數(shù),動點P從A出發(fā),以每秒1個單位的速度向終點C移動,設(shè)移動時間為t秒.
(1)點A表示的數(shù)為___________,點B表示的數(shù)為___________,點C表示的數(shù)為___________.
(2)用含t的代數(shù)式表示P到點A和點C的距離: PA= ,PC=___________.
(3)當(dāng)點P運動到B點時,點Q從A點出發(fā),以每秒3個單位的速度向C點運動, Q點到達C點后,再立即以同樣的速度返回,運動到終點A.
①在點Q向點C運動過程中,能否追上點P?若能,請求出點Q運動幾秒追上.
②在點Q開始運動后,P、Q兩點之間的距離能否為2個單位?如果能,請求出此時點P表示的數(shù);如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(-2,3)關(guān)于原點對稱的點的坐標(biāo)是
A. (2,3) B. (-2,-3) C. (2,-3) D. (-3,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB邊的垂直平分線l1交BC于點D,AC邊的垂直平分線l2交BC于點E,l1與l2相交于點O,連接0B,OC,若△ADE的周長為6cm,△OBC的周長為16cm.
(1)求線段BC的長;
(2)連接OA,求線段OA的長;
(3)若∠BAC=120°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為MN(點M、N分別在邊AC、BC上).給出以下判斷:
①當(dāng)MN∥AB時,CM=AM;
②當(dāng)四邊形CMDN為矩形時,AC=BC;
③當(dāng)點D為AB的中點時,∠CMN=∠B;
④當(dāng)∠CMN=∠B時,點D為AB的中點;
其中正確的是__.(把所有正確結(jié)論序號都填在橫線上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com