【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時針方向旋轉(zhuǎn)40°得到△A1BC1,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E、F.
求證:ΔBCF≌ΔBA1D.
當(dāng)∠C=40°時,請你證明四邊形A1BCE是菱形.
【答案】(1)詳見解析;(2)詳見解析.
【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì),得出A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,再根據(jù)ASA即可判定△BCF≌△BA1D;
(2)根據(jù)∠C=40°,△ABC是等腰三角形,即可得出∠A=∠C1=∠C=40°,進(jìn)而得到∠C1=∠CBF,∠A=∠A1BD,由此可判定A1E∥BC,A1B∥CE,進(jìn)而得到四邊形A1BCE是平行四邊形,最后根據(jù)A1B=BC,即可判定四邊形A1BCE是菱形.
(1)∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C,
∵將等腰△ABC繞頂點(diǎn)B逆時針方向旋轉(zhuǎn)40度到△A1BC1的位置,
∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,
在△BCF與△BA1D中, ,
∴△BCF≌△BA1D(ASA);
(2)∵∠C=40°,△ABC是等腰三角形,
∴∠A=∠C1=∠C=40°,
∴∠C1=∠CBF=40°,∠A=∠A1BD=40°,
∴A1E∥BC,A1B∥CE,
∴四邊形A1BCE是平行四邊形,
∵A1B=BC,
∴四邊形A1BCE是菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長線相交于點(diǎn)P,弦CE平分∠ACB,交AB于點(diǎn)F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:△PCF是等腰三角形;
(3)若∠BEC=30°,求證:以BC,BE,AC邊的三角形為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點(diǎn),若∠AEF=54,則∠B=( )
A. 54 B. 60 C. 72 D. 66
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點(diǎn)B作⊙O的切線BD,與CA的延長線交于點(diǎn)D,與半徑AO的延長線交于點(diǎn)E,過點(diǎn)A作⊙O的切線AF,與直徑BC的延長線交于點(diǎn)F.
(1)求證:△ACF∽△DAE;
(2)若S△AOC=,求DE的長;
(3)連接EF,求證:EF是⊙O的切線.
【答案】(1) 見解析; (2)3 ;(3)見解析.
【解析】試題分析:(1)根據(jù)圓周角定理得到∠BAC=90°,根據(jù)三角形的內(nèi)角和得到∠ACB=60°根據(jù)切線的性質(zhì)得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;
(2)根據(jù)S△AOC=,得到S△ACF=,通過△ACF∽△DAE,求得S△DAE=,過A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;
(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,過O作OG⊥EF于G,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.
試題解析:(1)證明:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切線,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴S△DAE=,過A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DEAH=×=,∴DE=;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF與△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF與△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切線.
【題型】解答題
【結(jié)束】
25
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2,0),點(diǎn)D是對角線AC上一動點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點(diǎn)B的坐標(biāo)為 ;
(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;
(3)①求證:;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如何快速計算1+2+3+…+n 的值呢?
(1)探究:令s=1+2+3+…+n①,則s=n+n-1+…+2+1②
①+②得2s=(n+1)(n+1)+…+(n+1)=n(n+1)
因此_________________.
(2)應(yīng)用:
①計算:________;
②如圖1,一串連續(xù)的整數(shù)1,2,3,4,…,自上往下排列,最上面一行有一個數(shù),以下各行均比上一行多一個數(shù)字,若共有15行數(shù)字,則最底下一行最左邊的數(shù)是_______;
③如圖2,一串連續(xù)的整數(shù)-25,-24,-23,…,按圖1方式排列,共有14行數(shù)字,求圖2中所有數(shù)字的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解題
在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0,y0)到直線Ax+By+C=0(A2+B2≠0)的距離公式為:d=,
例如,求點(diǎn)P(1,3)到直線4x+3y﹣3=0的距離.
解:由直線4x+3y﹣3=0知:A=4,B=3,C=﹣3
所以P(1,3)到直線4x+3y﹣3=0的距離為:d==2
根據(jù)以上材料,解決下列問題:
(1)求點(diǎn)P1(0,0)到直線3x﹣4y﹣5=0的距離.
(2)若點(diǎn)P2(1,0)到直線x+y+C=0的距離為,求實數(shù)C的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中AB∥CD,對角線AC,BD相交于O,點(diǎn)E,F(xiàn)分別為BD上兩點(diǎn),且BE=DF,∠AEF=∠CFB.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC=2OE,試判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的邊長AB=3cm,BC=6cm.某一時刻,動點(diǎn)M從A點(diǎn)出發(fā)沿AB方向以1cm/s的速度向B點(diǎn)勻速運(yùn)動;同時,動點(diǎn)N從D點(diǎn)出發(fā)沿DA方向以2cm/s的速度向A點(diǎn)勻速運(yùn)動,問:
(1)經(jīng)過多少時間,△AMN的面積等于矩形ABCD面積的九分之一?
(2)是否存在時刻t,使以A,M,N為頂點(diǎn)的三角形與△ACD相似?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com