實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內其血液中酒精含量y(毫克/百毫升)與時間(時)的關系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學模型計算:
①喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?
②當=5時,y=45.求k的值.
(2)按國家規(guī)定,車輛駕駛人員血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學模型,假設某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

(1)①200;②225;(2)不能,理由見解析.

解析試題分析:(1)①根據(jù)二次函數(shù)的最值求解即可.
②根據(jù)點在曲線上點的坐標滿足方程的關系,將(5,45)代入即可求得k的值.
(2)求出時(即酒精含量等于20毫克/百毫升)對應的x值(所需時間),推出結論.
試題解析:(1)①當時,,
∴喝酒后1時血液中的酒精含量達到最大值,最大值為200毫克/百毫升.
②∵當時,,且(5,45)在反比例函數(shù)(k>0)圖象上,
∴把(5,45)代入,解得.
(2)把代入反比例函數(shù).
∴喝完酒經過11.25時(即11:20時)為早上7:20.
∴第二天早上7:20以后才可以駕駛,7:00時不能駕車去上班.
考點:1.二次函數(shù)和反比例函數(shù)綜合應用(實際問題);2.曲線上點的坐標與方程的關系.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜邊BC上的高,垂足為D,BE=1cm.點M從點B出發(fā)沿BC方向以1cm/s的速度運動,點N從點E出發(fā),與點M同時同方向以相同的速度運動,以MN為邊在BC的上方作正方形MNGH.點M到達點D時停止運動,點N到達點C時停止運動.設運動時間為t(s).
(1)當t為何值時,點G剛好落在線段AD上?
(2)設正方形MNGH與Rt△ABC重疊部分的圖形的面積為S,當重疊部分的圖形是正方形時,求出S關于t的函數(shù)關系式并寫出自變量t的取值范圍.
(3)設正方形MNGH的邊NG所在直線與線段AC交于點P,連接DP,當t為何值時,△CPD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(-3,0)、(0,4),拋物線y=x2+bx+c經過點B,且頂點在直線x=上.
(1)求拋物線對應的函數(shù)關系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點A、B、O的對應點分別是D、C、E,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接BD,已知對稱軸上存在一點P使得△PBD的周長最小,求出P點的坐標;
(4)在(2)、(3)的條件下,若點M是線段OB上的一個動點(點M與點O、B不重合),過點M作MN∥BD交x軸于點N,連接PM、PN,設OM的長為t,△PMN的面積為S,求S和t的函數(shù)關系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時M點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知關于的方程:①和②,其中.
(1)求證:方程①總有兩個不相等的實數(shù)根;
(2)設二次函數(shù)的圖象與軸交于兩點(點在點的左側),將、兩點按照相同的方式平移后,點落在點處,點落在點處,若點的橫坐標恰好是方程②的一個根,求的值;
(3)設二次函數(shù),在(2)的條件下,函數(shù),的圖象位于直線左側的部分與直線)交于兩點,當向上平移直線時,交點位置隨之變化,若交點間的距離始終不變,則的值是________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1,拋物線軸交于兩點,與軸交于點,連結AC,若
(1)求拋物線的解析式;
(2)拋物線對稱軸上有一動點P,當時,求出點的坐標;
(3)如圖2所示,連結,是線段上(不與、重合)的一個動點.過點作直線,交拋物線于點,連結、,設點的橫坐標為.當t為何值時,的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖①,已知二次函數(shù)的解析式是y=ax2+bx(a>0),頂點為A(1,-1).
(1)a=   
(2)若點P在對稱軸右側的二次函數(shù)圖像上運動,連結OP,交對稱軸于點B,點B關于頂點A的對稱點為C,連接PC、OC,求證:∠PCB=∠OCB;
(3)如圖②,將拋物線沿直線y=-x作n次平移(n為正整數(shù),n≤12),頂點分別為A1,A2,…,An,橫坐標依次為1,2,…,n,各拋物線的對稱軸與x軸的交點分別為D1,D2,…,Dn,以線段AnDn為邊向右作正方形AnDnEnFn,是否存在點Fn恰好落在其中的一個拋物線上,若存在,求出所有滿足條件的正方形邊長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知直線l的解析式為,拋物線y = ax2+bx+2經過點A(m,0),B(2,0),D 三點.
(1)求拋物線的解析式及A點的坐標,并在圖示坐標系中畫出拋物線的大致圖象;
(2)已知點 P(x,y)為拋物線在第二象限部分上的一個動點,過點P作PE垂直x軸于點E, 延長PE與直線l交于點F,請你將四邊形PAFB的面積S表示為點P的橫坐標x的函數(shù), 并求出S的最大值及S最大時點P的坐標;
(3)將(2)中S最大時的點P與點B相連,求證:直線l上的任意一點關于x軸的對稱點一定在PB所在直線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點O為坐標原點,點D為拋物線的頂點,點E在拋物線上,點F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對應的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點C逆時針旋轉90°,點A對應點為點G,問點G是否在該拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1,把邊長分別是為4和2的兩個正方形紙片OABC和OD′E′F′疊放在一起.
(1)操作1:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉45°得到正方形ODEF,如圖2,連接AD、CF,線段AD與CF之間有怎樣的數(shù)量關系?試證明你的結論;
(2)操作2,如圖2,將正方形ODEF沿著射線DB以每秒1個單位的速度平移,平移后的正方形ODEF設為正方形PQMN,如圖3,設正方形PQMN移動的時間為x秒,正方形PQMN與正方形OABC的重疊部分面積為y,直接寫出y與x之間的函數(shù)解析式;
(3)操作3:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉90°得到正方形OHKL,如圖4,求△ACK的面積.

查看答案和解析>>

同步練習冊答案