【題目】在平面直角坐標系中,我們不妨把橫坐標和縱坐標相等的點叫“相等點”,例如點,都是“相等點”,顯然“相等點”有無數(shù)個.

1)若點是反比例函數(shù)為常數(shù),)的圖象上的“相等點”,求這個反比例函數(shù)的解析式;

2)一次函數(shù)為常數(shù),)的圖象上存在“相等點”嗎?若存在,請用含的式子表示出“相等點”的坐標,若不存在,說明理由;

3)若二次函數(shù)為常數(shù))的圖象上有且只有一個“相等點”,令時,求的取值范圍.

【答案】1;(2)當時不存在,當時存在.理由見解析;當時,函數(shù)的圖象上的“相等點”是;(3)的取值范圍是

【解析】

1)根據(jù)相等點的定義求得的值,再用待定系數(shù)法求得解析式;

2)設是一次函數(shù)為常數(shù),的圖象上的“相等點”,代入解析式求得便可;

3)若二次函數(shù),為常數(shù))的圖象上有且只有一個“相等點”,則二次函數(shù)與直線有且只有一個交點,由此得一元二次方程的有且只有2個相等的實數(shù)根,由此列出的關系式,進而根據(jù)的取值范圍求得的取值范圍,再求的取值范圍便可.

解:(1是反比例函數(shù)為常數(shù),的圖象上的“相等點”,

,

代入中,得,

反比例的解析式為

2是一次函數(shù)為常數(shù),的圖象上的“相等點”,則

,

,

,即時,方程無解,則此時一次函數(shù)為常數(shù),的圖象上不存在“相等點”,

,即時,得,則此時一次函數(shù)為常數(shù),的圖象上的“相等點”是,,

故當時,一次函數(shù)為常數(shù),的圖象上不存在“相等點”;當時,一次函數(shù)為常數(shù),的圖象上的“相等點”是

3二次函數(shù)為常數(shù))的圖象上有且只有一個“相等點”,

只有一個解,

,即有兩個相等的實數(shù)根,

,

,

,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場第一次購進20A商品,40B商品,共用了1980元.脫銷后,在進價不變的情況下,第二次購進40A商品,20B商品,共用了1560元.商品A的售價為每件30元,商品B的售價為每件60元.

1)求A,B兩種商品每件的進價分別是多少元?

2)為了滿足市場需求,需購進A,B兩種商品共1000件,且A種商品的數(shù)量不少于B種商品數(shù)量的3倍,請你設計進貨方案,使這1000件商品售完后,商場獲利最大,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年平昌冬奧會在29日到25日在韓國平昌郡舉行,為了調查中學生對冬奧會比賽項目的了解程度,某中學在學生中做了一次抽樣調查,調查結果共分為四個等級:A、非常了解B、比較了解C、基本了解D、不了解.根據(jù)調查統(tǒng)計結果,繪制了如圖所示的不完整的三種統(tǒng)計圖表.

對冬奧會了解程度的統(tǒng)計表

對冬奧會的了解程度

百分比

A非常了解

10%

B比較了解

15%

C基本了解

35%

D不了解

n%

(1)n=   

(2)扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是   ;

(3)請補全條形統(tǒng)計圖;

(4)根據(jù)調查結果,學校準備開展冬奧會的知識競賽,某班要從非常了解程度的小明和小剛中選一人參加,現(xiàn)設計了如下游戲來確定誰參賽,具體規(guī)則是:把四個完全相同的乒乓球標上數(shù)字1,2,3,4然后放到一個不透明的袋中,一個人先從袋中摸出一個球,另一人再從剩下的三個球中隨機摸出一個球,若摸出的兩個球上的數(shù)字和為偶數(shù),則小明去,否則小剛去,請用畫樹狀圖或列表的方法說明這個游戲是否公平.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一驢友分三次從地出發(fā)沿著不同線路(線、線、線)去地,在每條線路上行進的方式都分為穿越叢林、涉水行走和攀登這三種.他涉水行走4小時的路程與攀登6小時的路程相等;線、線路程相等,都比線路程多線總時間等于線總時間的一半;他用了3小時穿越叢林、2小時涉水行走和2小時攀登走完線;在線中穿越叢林、涉水行走和攀登所用時間分別比線上升了.若他用了小時穿越叢林、小時涉水行走和小時攀登走完線,且都為正整數(shù),則_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,點延長線上的一點,過點的切線,切點為,過兩點分別作的垂線,垂足分別為,連接

求證:(1平分;

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了美化環(huán)境,建設宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉.經(jīng)市場調查,甲種花卉的種植費用(元)與種植面積之間的函數(shù)關系如圖所示,乙種花卉的種植費用為每平方米100.

(1)直接寫出當時,的函數(shù)關系式;

(2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于且不超過乙種花卉種植面積的2倍,那么應該怎樣分配甲、乙兩種花卉的種植面積才能使種植費用最少?最少總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格圖中有格點△ABC(注:頂點在網(wǎng)格線交點處的三角形叫做格點三角形).只用沒有刻度的直尺,按如下要求畫圖,

(1)以點C為位似中心,在如圖中作△DECABC,且相似比為1:2;

(2)若點B為原點,點C(4,0),請在如圖中畫出平面直角坐標系,作出△ABC的外心,并直接寫出△ABC的外心的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE

1)發(fā)現(xiàn):當正方形AEFG繞點A旋轉,如圖②所示.

①線段DGBE之間的數(shù)量關系是   ;

②直線DG與直線BE之間的位置關系是   ;

2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD2AB,AG2AE時,上述結論是否成立,并說明理由.

3)應用:在(2)的情況下,連接BG、DE,若AE1AB2,求BG2+DE2的值(直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程的根可視為函數(shù)的圖象與函數(shù)的圖象交點的橫坐標,則方程的實根x0所在的范圍是(

A.B.C.D.

查看答案和解析>>

同步練習冊答案