【題目】如圖,已知ABDC,AE平分∠BAD,CDAE相交于點F,∠CFE=∠E.試說明ADBC.完成推理過程:

ABDC( ),

∴∠1=∠CFE( )

AE平分∠BAD( )

∴∠1 ( )

∵∠CFE=∠E( ),

∴∠2 (等量代換),

AD ( )

【答案】已知;兩直線平行,同位角相等;已知;∠2;角平分線的定義;已知;∠E;BC;內(nèi)錯角相等,兩直線平行.

【解析】

ABCD平行,利用兩直線平行內(nèi)錯角相等得到一對角相等,再由AE為角平分線得到一對角相等,等量代換得到一對內(nèi)錯角相等,利用內(nèi)錯角相等兩直線平行即可得證.

證明:∵ABDC(已知)
∴∠1=CFE(兩直線平行,同位角相等)
AE平分∠BAD(已知)
∴∠1=2(角平分線的定義)
∵∠CFE=E(已知)
∴∠2=E(等量代換)
ADBC(內(nèi)錯角相等,兩直線平行).
故答案為:已知;兩直線平行,同位角相等;已知;∠2;角平分線的定義;已知;∠;BC;內(nèi)錯角相等,兩直線平行.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我們知道對于一個圖形,通過不同的方法計算圖形的面積可以得到一個數(shù)學等式

例如:由圖1可得到(a+b)=a+2ab+b

1 2 3

1)寫出由圖2所表示的數(shù)學等式:_____________________寫出由圖3所表示的數(shù)學等式:_____________________;

2)利用上述結論,解決下面問題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀與應用:
閱讀1:a、b為實數(shù),且a>0,b>0,因為 ,所以 ,從而 (當a=b時取等號).
閱讀2:函數(shù) (常數(shù)m>0,x>0),由閱讀1結論可知: ,所以當 時,函數(shù) 的最小值為
閱讀理解上述內(nèi)容,解答下列問題:
(1)問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為 ,周長為 ,求當x=時,周長的最小值為
(2)問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當x=時, 的最小值為
(3)問題3:某民辦學習每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學生生活費每人10元;三是其他費用.其中,其他費用與學生人數(shù)的平方成正比,比例系數(shù)為0.01.當學校學生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學生人數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰中,, 底角為,動點從點向點運動,當是直角三角形是長為(

A.4B.23C.34D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.

(1)試判斷直線AB與直線CD的位置關系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EPCD交于點G,點HMN上一點,且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,KGH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖所示,在直角坐標系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3, 已知A(1,3),A1 (2,3), A2 (4,3), A3 (8,3),B(2,0), B1 (4,0), B2 (8,0), B3 (16,0),觀察每次變換前后的三角形有何變化,找出規(guī)律,按此變換規(guī)律將△OA3B3變換成△OAnBn, ,則An的坐標是_______ ,Bn的坐標是_________ .

.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,的四個頂點分別為,,,

1)作,使它與關于原點成中心對稱.

2)作的兩條對角線的交點關于軸的對稱點,點的坐標為_______

3)若將點向上平移個單位,使其落在內(nèi)部(不包括邊界),則的取值范圍是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一個矩形紙片,放置在平面直角坐標系中,是邊上一點,將沿直線對折,得到

1)當平分時,求的度數(shù)和點的坐標.

2)連接,當時,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于M、N兩點.

1)利用圖中條件,求反比例函數(shù)和一次函數(shù)的解析式.

2)根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍.

查看答案和解析>>

同步練習冊答案