【題目】閱讀下列材料:
在學(xué)習(xí)“分式方程及其解法”過程中,老師提出一個(gè)問題:若關(guān)于x的分式方程的解為正數(shù),求a的取值范圍?
經(jīng)過小組交流討論后,同學(xué)們逐漸形成了兩種意見:
小明說:解這個(gè)關(guān)于x的分式方程,得到方程的解為x=a﹣2.由題意可得a﹣2>0,所以a>2,問題解決.
小強(qiáng)說:你考慮的不全面.還必須保證a≠3才行.
老師說:小強(qiáng)所說完全正確.
請回答:小明考慮問題不全面,主要體現(xiàn)在哪里?請你簡要說明: .
完成下列問題:
(1)已知關(guān)于x的方程=1的解為負(fù)數(shù),求m的取值范圍;
(2)若關(guān)于x的分式方程=﹣1無解.直接寫出n的取值范圍.
【答案】(1):m<且m≠﹣;(2)n=1或n=.
【解析】
考慮分式的分母不為0,即分式必須有意義;
(1)表示出分式方程的解,由解為負(fù)數(shù)確定出m的范圍即可;
(2)分式方程去分母轉(zhuǎn)化為整式方程,根據(jù)分式方程無解,得到有增根或整式方程無解,確定出n的范圍即可.
請回答:小明沒有考慮分式的分母不為0(或分式必須有意義)這個(gè)條件;
(1)解關(guān)于x的分式方程得,x=,
∵方程有解,且解為負(fù)數(shù),
∴,
解得:m<且m≠-;
(2)分式方程去分母得:3-2x+nx-2=-x+3,即(n-1)x=2,
由分式方程無解,得到x-3=0,即x=3,
代入整式方程得:n=;
當(dāng)n-1=0時(shí),整式方程無解,此時(shí)n=1,
綜上,n=1或n=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成相應(yīng)學(xué)習(xí)任務(wù):
四點(diǎn)共圓的條件
我們知道,過任意一個(gè)三角形的三個(gè)頂點(diǎn)能作一個(gè)圓,過任意一個(gè)四邊形的四個(gè)頂點(diǎn)能作一個(gè)圓嗎?小明經(jīng)過實(shí)踐探究發(fā)現(xiàn):過對角互補(bǔ)的四邊形的四個(gè)頂點(diǎn)能作一個(gè)圓,下面是小明運(yùn)用反證法證明上述命題的過程:
已知:在四邊形ABCD中,∠B+∠D=180°.
求證:過點(diǎn)A、B、C、D可作一個(gè)圓.
證明:如圖(1),假設(shè)過點(diǎn)A、B、C、D四點(diǎn)不能作一個(gè)圓,過A、B、C三點(diǎn)作圓,若點(diǎn)D在圓外,設(shè)AD與圓相交于點(diǎn)E,連接CE,則∠B+∠AEC=180°,而已知∠B+∠D=180°,所以∠AEC=∠D,而∠AEC是△CED的外角,∠AEC>∠D,出現(xiàn)矛盾,故假設(shè)不成立,因此點(diǎn)D在過A、B、C三點(diǎn)的圓上.
如圖(2)假設(shè)過點(diǎn)A、B、C、D四點(diǎn)不能作一個(gè)圓,過A、B、C三點(diǎn)作圓,若點(diǎn)D在圓內(nèi),設(shè)AD的延長線與圓相交于點(diǎn)E,連接CE,則∠B+∠AEC=180°,而已知∠B+∠ADC=180°,所以∠AEC=∠ADC,而∠ADC是△CED的外角,∠ADC>∠AEC,出現(xiàn)矛盾,故假設(shè)不成立,因此點(diǎn)D在過A、B、C三點(diǎn)的圓上.
因此得到四點(diǎn)共圓的條件:過對角互補(bǔ)的四邊形的四個(gè)頂點(diǎn)能作一個(gè)圓.
學(xué)習(xí)任務(wù):
(1)材料中劃線部分結(jié)論的依據(jù)是 .
(2)證明過程中主要體現(xiàn)了下列哪種數(shù)學(xué)思想: (填字母代號即可)
A、函數(shù)思想 B、方程思想 C、數(shù)形結(jié)合思想 D、分類討論思想
(3)如圖(3),在四邊形ABCD中,∠ABC=∠ADC=90°,∠CAD=16°.AD=BD,則求∠ADB的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點(diǎn)E是射線BC上的點(diǎn),直線AF與直線AB關(guān)于直線AE對稱,直線AF交射線CD于點(diǎn)F.
(1)如圖①,當(dāng)點(diǎn)E是線段BC的中點(diǎn)時(shí),求證:AF=AB+CF;
(2)如圖②,當(dāng)∠BAE=30°時(shí),求證:AF=2AB﹣2CF;
(3)如圖③,當(dāng)∠BAE=60°時(shí),(2)中的結(jié)論是否還成立?若不成立,請判斷AF與AB、CF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,都是由邊長為1的正方體疊成的立體圖形,例如第(1)個(gè)圖形由1個(gè)正方體疊成,第(2)個(gè)圖形由4個(gè)正方體疊成,第(3)個(gè)圖形由10個(gè)正方體疊成,依次規(guī)律,第(8)個(gè)圖形有多少個(gè)正方體疊成( 。
A.120個(gè)B.121個(gè)C.122個(gè)D.123個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅家有一個(gè)小口瓶(如圖所示),她很想知道它的內(nèi)徑是多少?但是尺子不能伸在里邊直接測,于是她想了想,唉!有辦法了.她拿來了兩根長度相同的細(xì)木條,并且把兩根長木條的中點(diǎn)固定在一起,木條可以繞中點(diǎn)轉(zhuǎn)動(dòng),這樣只要量出AB的長,就可以知道玻璃瓶的內(nèi)徑是多少,你知道這是為什么嗎?請說明理由.(木條的厚度不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等腰直角△ABC外一點(diǎn),把BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )
A. 1∶ B. 1∶2 C. ∶2 D. 1∶
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,BD是中線,延長BC至E,CE=CD,
(1)求證:DB=DE
(2)在圖中過D作DF⊥BE交BE于F,若CF=4,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展“我最喜愛的一項(xiàng)體育活動(dòng)”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.
請結(jié)合以上信息解答下列問題:
(1)m= ;
(2)請補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)在圖2中,“乒乓球”所對應(yīng)扇形的圓心角的度數(shù)為 ;
(4)已知該校共有1200名學(xué)生,請你估計(jì)該校約有 名學(xué)生最喜愛足球活動(dòng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李師傅要給-塊長9米,寬7米的長方形地面鋪瓷磚.如圖,現(xiàn)有A和B兩種款式的瓷磚,且A款正方形瓷磚的邊長與B款長方形瓷磚的長相等, B款瓷磚的長大于寬.已知一塊A款瓷磚和-塊B款瓷磚的價(jià)格和為140元; 3塊A款瓷磚價(jià)格和4塊B款瓷磚價(jià)格相等.請回答以下問題:
(1)分別求出每款瓷磚的單價(jià).
(2)若李師傅買兩種瓷磚共花了1000 元,且A款瓷磚的數(shù)量比B款多,則兩種瓷磚各買了多少塊?
(3)李師傅打算按如下設(shè)計(jì)圖的規(guī)律進(jìn)行鋪瓷磚.若A款瓷磚的用量比B款瓷磚的2倍少14塊,且恰好鋪滿地面,則B款瓷磚的長和寬分別為_ 米(直接寫出答案).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com